scholarly journals Exploring the elevated water vapor signal associated with the free tropospheric biomass burning plume over the southeast Atlantic Ocean

2021 ◽  
Vol 21 (12) ◽  
pp. 9643-9668
Author(s):  
Kristina Pistone ◽  
Paquita Zuidema ◽  
Robert Wood ◽  
Michael Diamond ◽  
Arlindo M. da Silva ◽  
...  

Abstract. In southern Africa, widespread agricultural fires produce substantial biomass burning (BB) emissions over the region. The seasonal smoke plumes associated with these emissions are then advected westward over the persistent stratocumulus cloud deck in the southeast Atlantic (SEA) Ocean, resulting in aerosol effects which vary with time and location. Much work has focused on the effects of these aerosol plumes, but previous studies have also described an elevated free tropospheric water vapor signal over the SEA. Water vapor influences climate in its own right, and it is especially important to consider atmospheric water vapor when quantifying aerosol–cloud interactions and aerosol radiative effects. Here we present airborne observations made during the NASA ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) campaign over the SEA Ocean. In observations collected from multiple independent instruments on the NASA P-3 aircraft (from near-surface to 6–7 km), we observe a strongly linear correlation between pollution indicators (carbon monoxide (CO) and aerosol loading) and atmospheric water vapor content, seen at all altitudes above the boundary layer. The focus of the current study is on the especially strong correlation observed during the ORACLES-2016 deployment (out of Walvis Bay, Namibia), but a similar relationship is also observed in the August 2017 and October 2018 ORACLES deployments. Using reanalyses from the European Centre for Medium-Range Weather Forecasts (ECMWF) and Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2), and specialized WRF-Chem simulations, we trace the plume–vapor relationship to an initial humid, smoky continental source region, where it mixes with clean, dry upper tropospheric air and then is subjected to conditions of strong westward advection, namely the southern African easterly jet (AEJ-S). Our analysis indicates that air masses likely left the continent with the same relationship between water vapor and carbon monoxide as was observed by aircraft. This linear relationship developed over the continent due to daytime convection within a deep continental boundary layer (up to ∼5–6 km) and mixing with higher-altitude air, which resulted in fairly consistent vertical gradients in CO and water vapor, decreasing with altitude and varying in time, but this water vapor does not originate as a product of the BB combustion itself. Due to a combination of conditions and mixing between the smoky, moist continental boundary layer and the dry and fairly clean upper-troposphere air above (∼6 km), the smoky, humid air is transported by strong zonal winds and then advected over the SEA (to the ORACLES flight region) following largely isentropic trajectories. Hybrid Single-Particle Lagrangian Integrated Trajectory model (HYSPLIT) back trajectories support this interpretation. This work thus gives insights into the conditions and processes which cause water vapor to covary with plume strength. Better understanding of this relationship, including how it varies spatially and temporally, is important to accurately quantify direct, semi-direct, and indirect aerosol effects over this region.

2021 ◽  
Author(s):  
Kristina Pistone ◽  
Paquita Zuidema ◽  
Robert Wood ◽  
Michael Diamond ◽  
Arlindo M. da Silva ◽  
...  

Abstract. In southern Africa, widespread agricultural fires produce substantial biomass burning (BB) emissions over the region. The seasonal smoke plumes associated with these emissions are then advected westward over the persistent stratocumulus cloud deck in the Southeast Atlantic (SEA) Ocean, resulting in aerosol effects which vary with time and location. Much work has focused on the effects of these aerosol plumes, but previous studies have also described an elevated free-tropospheric water vapor signal over the SEA. Water vapor influences climate in its own right, and it is especially important to consider atmospheric water vapor when quantifying aerosol-cloud interactions and aerosol radiative effects. Here we present airborne observations made during the NASA ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) campaign over the SEA Ocean. In observations collected from multiple independent instruments on the NASA P-3 aircraft (from near-surface to 6–7 km), we observe a strongly linear correlation between pollution indicators (carbon monoxide (CO) and aerosol loading) and atmospheric water vapor content, seen at all altitudes above the boundary layer. The focus of the current study is on the especially strong correlation observed during the ORACLES-2016 deployment (out of Walvis Bay, Namibia), but a similar relationship is also observed in the August 2017 and October 2018 ORACLES deployments. Using ECMWF and MERRA-2 reanalyses and specialized WRF-Chem simulations, we trace the plume-vapor relationship to an initial humid, smoky continental source region, where it is subjected to conditions of strong westward advection, namely the South African Easterly Jet (AEJ-S). Our analysis indicates that airmasses likely left the continent with the same relationship between water vapor and carbon monoxide as was observed by aircraft. This linear relationship developed over the continent due to daytime convection within a deep continental boundary layer (up to 5–6 km) which produced fairly consistent vertical gradients in CO and water vapor, decreasing with altitude and varying in time, but does not originate as a product of the BB combustion itself. Due to a combination of conditions and mixing between the smoky, moist continental boundary layer and the dry and fairly clean upper-troposphere air above (~6 km), the smoky, humid air is transported by strong zonal winds and then advected over the SEA (to the ORACLES flight region) following largely isentropic trajectories. HYSPLIT back trajectories support this interpretation. Better understanding of the conditions and processes which cause the water vapor to covary with plume strength is important to accurately quantify direct, semi-direct, and indirect aerosol effects in this region.


Icarus ◽  
2020 ◽  
Vol 343 ◽  
pp. 113624
Author(s):  
Leslie K. Tamppari ◽  
Mark T. Lemmon

2016 ◽  
Vol 10 (4) ◽  
pp. 1647-1663 ◽  
Author(s):  
François Ritter ◽  
Hans Christian Steen-Larsen ◽  
Martin Werner ◽  
Valérie Masson-Delmotte ◽  
Anais Orsi ◽  
...  

Abstract. Quantifying the magnitude of post-depositional processes affecting the isotopic composition of surface snow is essential for a more accurate interpretation of ice core data. To achieve this, high temporal resolution measurements of both lower atmospheric water vapor and surface snow isotopic composition are required. This study presents continuous measurements of water vapor isotopes performed in East Antarctica (Kohnen station) from December 2013 to January 2014 using a laser spectrometer. Observations have been compared with the outputs of two atmospheric general circulation models (AGCMs) equipped with water vapor isotopes: ECHAM5-wiso and LMDZ5Aiso. During our monitoring period, the signals in the 2 m air temperature T, humidity mixing ratio q and both water vapor isotopes δD and δ18O are dominated by the presence of diurnal cycles. Both AGCMs simulate similar diurnal cycles with a mean amplitude 30 to 70 % lower than observed, possibly due to an incorrect simulation of the surface energy balance and the boundary layer dynamics. In parallel, snow surface samples were collected each hour over 35 h, with a sampling depth of 2–5 mm. A diurnal cycle in the isotopic composition of the snow surface is observed in phase with the water vapor, reaching a peak-to-peak amplitude of 3 ‰ for δD over 24 h (compared to 36 ‰ for δD in the water vapor). A simple box model treated as a closed system has been developed to study the exchange of water molecules between an air and a snow reservoir. In the vapor, the box model simulations show too much isotopic depletion compared to the observations. Mixing with other sources (advection, free troposphere) has to be included in order to fit the observations. At the snow surface, the simulated isotopic values are close to the observations with a snow reservoir of  ∼ 5 mm depth (range of the snow sample depth). Our analysis suggests that fractionation occurs during sublimation and that vapor–snow exchanges can no longer be considered insignificant for the isotopic composition of near-surface snow in polar regions.


2010 ◽  
Vol 10 (20) ◽  
pp. 9819-9831 ◽  
Author(s):  
C. A. Randles ◽  
V. Ramaswamy

Abstract. Tropospheric aerosols emitted from biomass burning reduce solar radiation at the surface and locally heat the atmosphere. Equilibrium simulations using an atmospheric general circulation model (GFDL AGCM) indicate that strong atmospheric absorption from these particles can cool the surface and increase upward motion and low-level convergence over southern Africa during the dry season. These changes increase sea level pressure over land in the biomass burning region and spin-up the hydrologic cycle by increasing clouds, atmospheric water vapor, and, to a lesser extent, precipitation. Cloud increases serve to reinforce the surface radiative cooling tendency of the aerosol. Conversely, if the climate over southern Africa were hypothetically forced by high loadings of scattering aerosol, then the change in the low-level circulation and increased subsidence would serve to decrease clouds, precipitation, and atmospheric water vapor. Surface cooling associated with scattering-only aerosols is mitigated by warming from cloud decreases. The direct and semi-direct climate impacts of biomass burning aerosol over southern Africa are sensitive to the total amount of aerosol absorption and how clouds change in response to the aerosol-induced heating of the atmosphere.


2014 ◽  
Vol 519 ◽  
pp. 2091-2100 ◽  
Author(s):  
Amzad H. Laskar ◽  
Jr-Chuan Huang ◽  
Shih-Chieh Hsu ◽  
Sourendra K. Bhattacharya ◽  
Chung-Ho Wang ◽  
...  

2010 ◽  
Vol 10 (4) ◽  
pp. 9731-9752 ◽  
Author(s):  
C. A. Randles ◽  
V. Ramaswamy

Abstract. Tropospheric aerosols emitted from biomass burning reduce solar radiation at the surface and locally heat the atmosphere. Equilibrium simulations using an atmospheric general circulation model (GFDL AGCM) indicate that strong atmospheric absorption from these particles can cool the surface and increase upward motion and low-level convergence over southern Africa during the dry season. These changes increase sea level pressure over land in the biomass burning region and spin-up the hydrologic cycle by increasing clouds, atmospheric water vapor, and, to a lesser extent, precipitation. Cloud increases serve to reinforce the surface radiative cooling tendency of the aerosol. Conversely, if the climate over southern Africa were hypothetically forced by high loadings of scattering aerosol, then the change in the low-level circulation and increased subsidence would serve to decrease clouds, precipitation, and atmospheric water vapor. Warming from cloud decreases mitigates surface cooling associated with scattering-only aerosols.


Sign in / Sign up

Export Citation Format

Share Document