aerosol effects
Recently Published Documents


TOTAL DOCUMENTS

343
(FIVE YEARS 76)

H-INDEX

47
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Hailing Jia ◽  
Johannes Quaas ◽  
Edward Gryspeerdt ◽  
Christoph Böhm ◽  
Odran Sourdeval

Abstract. Aerosol–cloud interaction is the most uncertain component of the overall anthropogenic forcing of the climate, in which the Twomey effect plays a fundamental role. Satellite-based estimates of the Twomey effect are especially challenging, mainly due to the difficulty in disentangling aerosol effects on cloud droplet number concentration (Nd) from possible confounders. By combining multiple satellite observations and reanalysis, this study investigates the impacts of a) updraft, b) precipitation, c) retrieval errors, as well as (d) vertical co-location between aerosol and cloud, on the assessment of Nd-toaerosol sensitivity (S) in the context of marine warm (liquid) clouds. Our analysis suggests that S increases remarkably with both cloud base height and cloud geometric thickness (proxies for vertical velocity at cloud base), consistent with stronger aerosol-cloud interactions at larger updraft velocity. In turn, introducing the confounding effect of aerosol–precipitation interaction can artificially amplify S by an estimated 21 %, highlighting the necessity of removing precipitating clouds from analyses on the Twomey effect. It is noted that the retrieval biases in aerosol and cloud appear to underestimate S, in which cloud fraction acts as a key modulator, making it practically difficult to balance the accuracies of aerosol–cloud retrievals at aggregate scales (e.g., 1° × 1° grid). Moreover, we show that using column-integrated sulfate mass concentration (SO4C) to approximate sulfate concentration at cloud base (SO4B) can result in a degradation of correlation with Nd, along with a nearly twofold enhancement of S, mostly attributed to the inability of SO4C to capture the full spatio-temporal variability of SO4B. These findings point to several potential ways forward to account for the major influential factors practically by means of satellite observations and reanalysis, aiming at an optimal observational estimate of global radiative forcing due to the Twomey effect.


2021 ◽  
Author(s):  
Hailing Jia ◽  
Johannes Quaas

<p>Aerosol–cloud interaction is the most uncertain component of the overall anthropogenic forcing of the climate, inwhich the Twomey effect plays a fundamental role. Satellite-based estimates of the Twomey effect are especially challenging, mainly due to the difficulty in disentangling aerosol effects on cloud droplet number concentration (Nd) from possible confounders. By combining multiple satellite observations and reanalysis, this study investigates the impacts of a) updraft, b) precipitation, c) retrieval errors, as well as (d) vertical co-location between aerosol and cloud, on the assessment of Nd-to-aerosol sensitivity (S) in the context of marine warm (liquid) clouds. Our analysis suggests that S increases remarkably with both cloud base height and cloud geometric thickness (proxies for vertical velocity at cloud base), consistent with stronger aerosol-cloud interactions at larger updraft velocity. In turn, introducing the confounding effect of aerosol–precipitation interaction can artificially amplify S by an estimated 21 %, highlighting the necessity of removing precipitating clouds from analyses on the Twomey effect. It is noted that the retrieval biases in aerosol and cloud appear to underestimate S, in which cloud fraction acts as a key modulator, making it practically difficult to balance the accuracies of aerosol–cloud retrievals at aggregate scales (e.g., 1◦ × 1◦ grid). Moreover, we show that using column-integrated sulfate mass concentration (SO4C) to approximate sulfate concentration at cloud base (SO4B) can result in a degradation of correlation with Nd, along with a nearly two fold enhancement of S, mostly attributed to the inability of SO4C to capture the full spatio-temporal variability of SO4B. These findings point to several potential ways forward to account for the major influential factors practically by means of satellite observations and reanalysis, aiming at an optimal observational estimate of global radiative forcing due to the Twomey effect.</p>


2021 ◽  
Author(s):  
Seoung Soo Lee ◽  
Jinho Choi ◽  
Goun Kim ◽  
Kyung-Ja Ha ◽  
Kyong-Hwan Seo ◽  
...  

Abstract. This study examines the role played by aerosols in the development of clouds and precipitation in two metropolitan areas in East Asia that has experienced substantial increases in aerosol concentrations over the last decades. These two areas are the Seoul and Beijing areas and the examination has been done by performing simulations using a cloud-system resolving model (CSRM). Aerosols are advected from the continent to the Seoul area and this increases aerosol concentrations in the Seoul area. These increased aerosol concentrations induce the enhancement of condensation that in turn induces the enhancement of deposition and precipitation amount in a system of less deep convective clouds as compared to those in the Beijing area. In a system of deeper clouds in the Beijing area, increasing aerosol concentrations also enhance condensation but reduce deposition. This leads to aerosol-induced negligible changes in precipitation amount. Also, in the system, there is a competition for convective energy among clouds with different condensation and updrafts. This competition results in different responses to increasing aerosol concentrations among different types of precipitation, which are light, medium and heavy precipitation in the Beijing area. In both of the areas, aerosol-induced changes in freezing play a negligible role in aerosol-precipitation interactions as compared to the role played by aerosol-induced changes in condensation and deposition.


Author(s):  
Roya Ghahreman ◽  
Wanmin Gong ◽  
Stephen R. Beagley ◽  
Ayodeji Akingunola ◽  
Paul A. Makar ◽  
...  
Keyword(s):  

2021 ◽  
Vol 21 (12) ◽  
pp. 9643-9668
Author(s):  
Kristina Pistone ◽  
Paquita Zuidema ◽  
Robert Wood ◽  
Michael Diamond ◽  
Arlindo M. da Silva ◽  
...  

Abstract. In southern Africa, widespread agricultural fires produce substantial biomass burning (BB) emissions over the region. The seasonal smoke plumes associated with these emissions are then advected westward over the persistent stratocumulus cloud deck in the southeast Atlantic (SEA) Ocean, resulting in aerosol effects which vary with time and location. Much work has focused on the effects of these aerosol plumes, but previous studies have also described an elevated free tropospheric water vapor signal over the SEA. Water vapor influences climate in its own right, and it is especially important to consider atmospheric water vapor when quantifying aerosol–cloud interactions and aerosol radiative effects. Here we present airborne observations made during the NASA ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) campaign over the SEA Ocean. In observations collected from multiple independent instruments on the NASA P-3 aircraft (from near-surface to 6–7 km), we observe a strongly linear correlation between pollution indicators (carbon monoxide (CO) and aerosol loading) and atmospheric water vapor content, seen at all altitudes above the boundary layer. The focus of the current study is on the especially strong correlation observed during the ORACLES-2016 deployment (out of Walvis Bay, Namibia), but a similar relationship is also observed in the August 2017 and October 2018 ORACLES deployments. Using reanalyses from the European Centre for Medium-Range Weather Forecasts (ECMWF) and Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2), and specialized WRF-Chem simulations, we trace the plume–vapor relationship to an initial humid, smoky continental source region, where it mixes with clean, dry upper tropospheric air and then is subjected to conditions of strong westward advection, namely the southern African easterly jet (AEJ-S). Our analysis indicates that air masses likely left the continent with the same relationship between water vapor and carbon monoxide as was observed by aircraft. This linear relationship developed over the continent due to daytime convection within a deep continental boundary layer (up to ∼5–6 km) and mixing with higher-altitude air, which resulted in fairly consistent vertical gradients in CO and water vapor, decreasing with altitude and varying in time, but this water vapor does not originate as a product of the BB combustion itself. Due to a combination of conditions and mixing between the smoky, moist continental boundary layer and the dry and fairly clean upper-troposphere air above (∼6 km), the smoky, humid air is transported by strong zonal winds and then advected over the SEA (to the ORACLES flight region) following largely isentropic trajectories. Hybrid Single-Particle Lagrangian Integrated Trajectory model (HYSPLIT) back trajectories support this interpretation. This work thus gives insights into the conditions and processes which cause water vapor to covary with plume strength. Better understanding of this relationship, including how it varies spatially and temporally, is important to accurately quantify direct, semi-direct, and indirect aerosol effects over this region.


2021 ◽  
Author(s):  
Kyriakoula Papachristopoulou ◽  
Ilias Fountoulakis ◽  
Panagiotis Kosmopoulos ◽  
Panagiotis Ι. Raptis ◽  
Rodanthi-Elisavet Mamouri ◽  
...  

<p>Cyprus focuses on increasing the share of its renewable energy resources from 13.9% in 2020 to 22.9% in 2030, with solar energy exploitation systems to be one of the main pillars of this effort, due to the high solar potential of the island. In this study, we investigated the effect of clouds as well as aerosols, and especially dust, on the downwelling surface solar irradiation in terms of Global Horizontal Irradiation (GHI) and Direct Normal Irradiation (DNI). In order to quantify the effects of clouds, aerosols and dust on different surface solar radiation components, we used the synergy of satellite derived products for clouds, high quality and fine resolution satellite retrievals of aerosols and dust from the newly developed MIDAS dataset, and radiative transfer modeling (RTM). GHI and DNI climatologies have been also developed based on the above information. According to our findings, clouds attenuate ~25 – 30% of annual GHI and 35 – 50% of annual DNI, aerosols attenuate 5 – 10% and 15 – 35% respectively, with dust being responsible for 30 – 50% of the overall attenuation by aerosols. The outcomes of this study are useful for installation planning and for estimating the PV and CSP performance on a short-term future basis, helping towards improved penetration of solar energy exploitation systems in the electric grid of Cyprus. Furthermore, they are strongly linked to Affordable and Clean Energy (SDG 7) which has a central role in national climate plans and requires services in energy meteorology, climate applications of satellite data, and providing high quality wind and radiation data.</p><p> </p><p><strong>Acknowledgements</strong></p><p>This study was funded by the EuroGEO e-shape (grant agreement No 820852) and EXCELSIOR (grant agreement No 857510)</p>


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 642
Author(s):  
Qianguang Tu ◽  
Zengzhou Hao ◽  
Yunwei Yan ◽  
Bangyi Tao ◽  
Chuyong Chung ◽  
...  

Understanding aerosols optical properties over the oceans is vital for enhancing our knowledge of aerosol effects on climate and pollutant transport between continents. In this study, the characteristics of aerosol optical thickness (AOT) at 500 nm (τ500nm), Ångström exponent for the wavelength pair 440–870 nm (α) and volume size distribution (VSD), are presented and analyzed over the East China seas based on the observations at four AERONET sites during 1999–2019. The main results are: (1) the mean τ500nm (α) value ranged from 0.31 to 0.36 (1.17–1.31); (2) the distribution of τ500nm (α) is similar to a log-normal distribution with a right-skewed long tail larger than 0.5 (closer to the normal distribution); (3) large AOT (τ500nm>0.6) was frequently observed in summer (June and July) and spring (March to May), followed by autumn and winter; (4) all aerosol types were observed, and urban/industrial aerosols and mixed types were dominant throughout the period. The atmospheric column aerosol was characterized by a bimodal lognormal size distribution with a fine mode at effective radius, Reff = 0.16 ± 0.01 μm, and coarse mode at Reff = 2.05 ± 0.1 μm.


2021 ◽  
Vol 21 (7) ◽  
pp. 5705-5718
Author(s):  
Yawei Qu ◽  
Apostolos Voulgarakis ◽  
Tijian Wang ◽  
Matthew Kasoar ◽  
Chris Wells ◽  
...  

Abstract. Interactions between aerosols and gases in the atmosphere have been the focus of an increasing number of studies in recent years. Here, we focus on aerosol effects on tropospheric ozone that involve meteorological feedbacks induced by aerosol–radiation interactions. Specifically, we study the effects that involve aerosol influences on the transport of gaseous pollutants and on atmospheric moisture, both of which can impact ozone chemistry. For this purpose, we use the UK Earth System Model (UKESM1), with which we performed sensitivity simulations including and excluding the aerosol direct radiative effect (ADE) on atmospheric chemistry, and focused our analysis on an area with a high aerosol presence, namely China. By comparing the simulations, we found that ADE reduced shortwave radiation by 11 % in China and consequently led to lower turbulent kinetic energy, weaker horizontal winds and a shallower boundary layer (with a maximum of 102.28 m reduction in north China). On the one hand, the suppressed boundary layer limited the export and diffusion of pollutants and increased the concentration of CO, SO2, NO, NO2, PM2.5 and PM10 in the aerosol-rich regions. The NO/NO2 ratio generally increased and led to more ozone depletion. On the other hand, the boundary layer top acted as a barrier that trapped moisture at lower altitudes and reduced the moisture at higher altitudes (the specific humidity was reduced by 1.69 % at 1493 m on average in China). Due to reduced water vapour, fewer clouds were formed and more sunlight reached the surface, so the photolytical production of ozone increased. Under the combined effect of the two meteorology feedback methods, the annual average ozone concentration in China declined by 2.01 ppb (6.2 %), which was found to bring the model into closer agreement with surface ozone measurements from different parts of China.


2021 ◽  
Vol 14 (4) ◽  
pp. 2857-2871
Author(s):  
Alexander Vasilkov ◽  
Nickolay Krotkov ◽  
Eun-Su Yang ◽  
Lok Lamsal ◽  
Joanna Joiner ◽  
...  

Abstract. We discuss an explicit and consistent aerosol correction for cloud and NO2 retrievals that are based on the mixed Lambertian-equivalent reflectivity (MLER) concept. We apply the approach to data from the Ozone Monitoring Instrument (OMI) for a case study over northeastern China. The cloud algorithm reports an effective cloud pressure, also known as cloud optical centroid pressure (OCP), from oxygen dimer (O2−O2) absorption at 477 nm after determining an effective cloud fraction (ECF) at 466 nm. The retrieved cloud products are then used as inputs to the standard OMI NO2 algorithm. A geometry-dependent Lambertian-equivalent reflectivity (GLER), which is a proxy of surface bidirectional reflectance, is used for the ground reflectivity in our implementation of the MLER approach. The current standard OMI cloud and NO2 algorithms implicitly account for aerosols by treating them as nonabsorbing particulate scatters within the cloud retrieval. To explicitly account for aerosol effects, we use a model of aerosol optical properties from a global aerosol assimilation system and radiative transfer computations. This approach allows us to account for aerosols within the OMI cloud and NO2 algorithms with relatively small changes. We compare the OMI cloud and NO2 retrievals with implicit and explicit aerosol corrections over our study area.


Sign in / Sign up

Export Citation Format

Share Document