scholarly journals The SOA/VOC/NO<sub>x</sub> system: an explicit model of secondary organic aerosol formation

2007 ◽  
Vol 7 (21) ◽  
pp. 5599-5610 ◽  
Author(s):  
M. Camredon ◽  
B. Aumont ◽  
J. Lee-Taylor ◽  
S. Madronich

Abstract. Our current understanding of secondary organic aerosol (SOA) formation is limited by our knowledge of gaseous secondary organics involved in gas/particle partitioning. The objective of this study is to explore (i) the potential for products of multiple oxidation steps contributing to SOA, and (ii) the evolution of the SOA/VOC/NOx system. We developed an explicit model based on the coupling of detailed gas-phase oxidation schemes with a thermodynamic condensation module. Such a model allows prediction of SOA mass and speciation on the basis of first principles. The SOA/VOC/NOx system is studied for the oxidation of 1-octene under atmospherically relevant concentrations. In this study, gaseous oxidation of octene is simulated to lead to SOA formation. Contributors to SOA formation are shown to be formed via multiple oxidation steps of the parent hydrocarbon. The behaviour of the SOA/VOC/NOx system simulated using the explicit model agrees with general tendencies observed during laboratory chamber experiments. This explicit modelling of SOA formation appears as a useful exploratory tool to (i) support interpretations of SOA formation observed in laboratory chamber experiments, (ii) give some insights on SOA formation under atmospherically relevant conditions and (iii) investigate implications for the regional/global lifetimes of the SOA.

2007 ◽  
Vol 7 (4) ◽  
pp. 11223-11256 ◽  
Author(s):  
M. Camredon ◽  
B. Aumont ◽  
J. Lee-Taylor ◽  
S. Madronich

Abstract. Our current understanding of secondary organic aerosol (SOA) formation is limited by our knowledge of gaseous secondary organics involved in gas/particle partitioning. The objective of this study is to explore (i) the potential for products of multiple oxidation steps contributing to SOA, and (ii) the evolution of the SOA/VOC/NOx system. We developed an explicit model based on the coupling of detailed gas-phase oxidation schemes with a thermodynamic condensation module. Such a model allows prediction of SOA mass and speciation on the basis of first principles. The SOA/VOC/NOx system is studied for the oxidation of 1-octene under atmospherically relevant concentrations. In this study, gaseous oxidation of octene is simulated to lead to SOA formation. Contributors to SOA formation are shown to be formed via multiple oxidation steps of the parent hydrocarbon. The behaviour of the SOA/VOC/NOx system simulated using the explicit model agrees with general tendencies observed during laboratory chamber experiments. This explicit modelling of SOA formation appears as a useful exploratory tool to (i) support interpretations of SOA formation observed in laboratory chamber experiments, (ii) give some insights on SOA formation under atmospherically relevant conditions and (iii) investigate implications for the regional/global lifetimes of the SOA.


2015 ◽  
Vol 15 (20) ◽  
pp. 28005-28035 ◽  
Author(s):  
A. K. Y. Lee ◽  
J. P. D. Abbatt ◽  
W. R. Leaitch ◽  
S.-M. Li ◽  
S. J. Sjostedt ◽  
...  

Abstract. Substantial biogenic secondary organic aerosol (BSOA) formation was investigated in a coniferous forest mountain region at Whistler, British Columbia. A largely biogenic aerosol growth episode was observed, providing a unique opportunity to investigate BSOA formation chemistry in a forested environment with limited influence from anthropogenic emissions. Positive matrix factorization of aerosol mass spectrometry (AMS) measurement identified two types of BSOA (BSOA-1 and BSOA-2), which were primarily generated by gas-phase oxidation of monoterpenes and perhaps sesquiterpenes. The temporal variations of BSOA-1 and BSOA-2 can be explained by gas-particle partitioning in response to ambient temperature and the relative importance of different oxidation mechanisms between day and night. While BSOA-1 will arise from gas-phase ozonolysis and nitrate radical chemistry at night, BSOA-2 is less volatile than BSOA-1 and consists of products formed via gas-phase oxidation by the OH radical and ozone during the day. Organic nitrates produced through nitrate radical chemistry can account for 22–33 % of BSOA-1 mass at night. The mass spectra of BSOA-1 and BSOA-2 have higher values of the mass fraction of m/z 91 (f91) compared to the background organic aerosol, and so f91 is used as an indicator of BSOA formation pathways. A comparison between laboratory studies in the literature and our field observations highlights the potential importance of gas-phase formation chemistry of BSOA-2 type materials that may not be captured in smog chamber experiments, perhaps due to the wall loss of gas-phase intermediate products.


2016 ◽  
Vol 16 (11) ◽  
pp. 6721-6733 ◽  
Author(s):  
Alex K. Y. Lee ◽  
Jonathan P. D. Abbatt ◽  
W. Richard Leaitch ◽  
Shao-Meng Li ◽  
Steve J. Sjostedt ◽  
...  

Abstract. Substantial biogenic secondary organic aerosol (BSOA) formation was investigated in a coniferous forest mountain region in Whistler, British Columbia. A largely biogenic aerosol growth episode was observed, providing a unique opportunity to investigate BSOA formation chemistry in a forested environment with limited influence from anthropogenic emissions. Positive matrix factorization of aerosol mass spectrometry (AMS) measurement identified two types of BSOA (BSOA-1 and BSOA-2), which were primarily generated by gas-phase oxidation of monoterpenes and perhaps sesquiterpenes. The temporal variations of BSOA-1 and BSOA-2 can be explained by gas–particle partitioning in response to ambient temperature and the relative importance of different oxidation mechanisms between day and night. While BSOA-1 arises from gas-phase ozonolysis and nitrate radical chemistry at night, BSOA-2 is likely less volatile than BSOA-1 and consists of products formed via gas-phase oxidation by OH radical and ozone during the day. Organic nitrates produced through nitrate radical chemistry can account for 22–33 % of BSOA-1 mass at night. The mass spectra of BSOA-1 and BSOA-2 have higher values of the mass fraction of m/z 91 (f91) compared to the background organic aerosol. Using f91 to evaluate BSOA formation pathways in this unpolluted, forested region, heterogeneous oxidation of BSOA-1 is a minor production pathway of BSOA-2.


2016 ◽  
Author(s):  
M. Riva ◽  
T. Da Silva Barbosa ◽  
Y.-H. Lin ◽  
E. A. Stone ◽  
A. Gold ◽  
...  

Abstract. We report the formation of aliphatic organosulfates (OSs) in secondary organic aerosol (SOA) from the photooxidation of C10 – C12 alkanes. The results complement those from our laboratories reporting the formation of OSs and sulfonates from gas-phase oxidation of polycyclic aromatic hydrocarbons (PAHs). Both studies strongly support formation of OSs from gas-phase oxidation of anthropogenic precursors, hypothesized on the basis of recent field studies in which aromatic and aliphatic OSs were detected in fine aerosol collected from several major urban locations. In this study, dodecane, cyclodecane and decalin, considered to be important SOA precursors in urban areas, were photochemically oxidized in an outdoor smog chamber in the presence of either non-acidified or acidified ammonium sulfate seed aerosol. Effects of chemical structure, acidity and relative humidity on OS formation were examined. Aerosols collected from all experiments were characterized by ultra performance liquid chromatography coupled to electrospray ionization high-resolution quadrupole time-of flight mass spectrometry (UPLC/ESI-HR-QTOFMS). Most of the OSs identified could be explained by formation of gaseous epoxide precursors with subsequent acid-catalyzed reactive uptake onto sulfate aerosol. The OSs identified here were also observed and quantified in fine urban aerosol samples collected in Lahore, Pakistan, and Pasadena, USA. Many of the OSs identified from the photooxidation of decalin and cyclodecane are isobars of known monoterpene organosulfates, and thus care must be taken in the analysis of alkane-derived organosulfates in urban aerosol.


2015 ◽  
Vol 15 (12) ◽  
pp. 17367-17396 ◽  
Author(s):  
Y. B. Lim ◽  
B. J. Turpin

Abstract. Aqueous chemistry in atmospheric waters (e.g., cloud droplets or wet aerosols) is well accepted as an atmospheric pathway to produce secondary organic aerosol (SOAaq). Water-soluble organic compounds with small carbon numbers (C2-C3) are precursors for SOAaq and products include organic acids, organic sulfates, and high molecular weight compounds/oligomers. Fenton reactions and the uptake of gas-phase OH radicals are considered to be the major oxidant sources for aqueous organic chemistry. However, the sources and availability of oxidants in atmospheric waters are not well understood. The degree to which OH is produced in the aqueous phase affects the balance of radical and non-radical aqueous chemistry, the properties of the resulting aerosol, and likely its atmospheric behavior. This paper demonstrates organic peroxide formation during aqueous photooxidation of methylglyoxal using ultra high resolution Fourier Transform Ion Cyclotron Resonance electrospray ionization mass spectrometry (FTICR-MS). Organic peroxides are known to form through gas-phase oxidation of volatile organic compounds. They contribute secondary organic aerosol (SOA) formation directly by forming peroxyhemiacetals, and epoxides, and indirectly by enhancing gas-phase oxidation through OH recycling. We provide simulation results of organic peroxide/peroxyhemiacetal formation in clouds and wet aerosols and discuss organic peroxides as a source of condensed-phase OH radicals and as a contributor to aqueous SOA.


2016 ◽  
Vol 16 (17) ◽  
pp. 11001-11018 ◽  
Author(s):  
Matthieu Riva ◽  
Thais Da Silva Barbosa ◽  
Ying-Hsuan Lin ◽  
Elizabeth A. Stone ◽  
Avram Gold ◽  
...  

Abstract. We report the formation of aliphatic organosulfates (OSs) in secondary organic aerosol (SOA) from the photooxidation of C10–C12 alkanes. The results complement those from our laboratories reporting the formation of OSs and sulfonates from gas-phase oxidation of polycyclic aromatic hydrocarbons (PAHs). Both studies strongly support the formation of OSs from the gas-phase oxidation of anthropogenic precursors, as hypothesized on the basis of recent field studies in which aromatic and aliphatic OSs were detected in fine aerosol collected from several major urban locations. In this study, dodecane, cyclodecane and decalin, considered to be important SOA precursors in urban areas, were photochemically oxidized in an outdoor smog chamber in the presence of either non-acidified or acidified ammonium sulfate seed aerosol. Effects of acidity and relative humidity on OS formation were examined. Aerosols collected from all experiments were characterized by ultra performance liquid chromatography coupled to electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry (UPLC/ESI-HR-QTOFMS). Most of the OSs identified could be explained by formation of gaseous epoxide precursors with subsequent acid-catalyzed reactive uptake onto sulfate aerosol and/or heterogeneous reactions of hydroperoxides. The OSs identified here were also observed and quantified in fine urban aerosol samples collected in Lahore, Pakistan, and Pasadena, CA, USA. Several OSs identified from the photooxidation of decalin and cyclodecane are isobars of known monoterpene organosulfates, and thus care must be taken in the analysis of alkane-derived organosulfates in urban aerosol.


2012 ◽  
Vol 24 (11) ◽  
pp. 689-697 ◽  
Author(s):  
Jacob D. McDonald ◽  
Melanie Doyle-Eisele ◽  
Dean Kracko ◽  
Amie Lund ◽  
Jason D. Surratt ◽  
...  

2011 ◽  
Vol 11 (21) ◽  
pp. 11055-11067 ◽  
Author(s):  
K. Salo ◽  
M. Hallquist ◽  
Å. M. Jonsson ◽  
H. Saathoff ◽  
K.-H. Naumann ◽  
...  

Abstract. The aim of this study was to investigate oxidation of SOA formed from ozonolysis of α-pinene and limonene by hydroxyl radicals. This paper focuses on changes of particle volatility, using a Volatility Tandem DMA (VTDMA) set-up, in order to explain and elucidate the mechanism behind atmospheric ageing of the organic aerosol. The experiments were conducted at the AIDA chamber facility of Karlsruhe Institute of Technology (KIT) in Karlsruhe and at the SAPHIR chamber of Forchungzentrum Jülich (FZJ) in Jülich. A fresh SOA was produced from ozonolysis of α-pinene or limonene and then aged by enhanced OH exposure. As an OH radical source in the AIDA-chamber the ozonolysis of tetramethylethylene (TME) was used while in the SAPHIR-chamber the OH was produced by natural light photochemistry. A general feature is that SOA produced from ozonolysis of α-pinene and limonene initially was rather volatile and becomes less volatile with time in the ozonolysis part of the experiment. Inducing OH chemistry or adding a new portion of precursors made the SOA more volatile due to addition of new semi-volatile material to the aged aerosol. The effect of OH chemistry was less pronounced in high concentration and low temperature experiments when lower relative amounts of semi-volatile material were available in the gas phase. Conclusions drawn from the changes in volatility were confirmed by comparison with the measured and modelled chemical composition of the aerosol phase. Three quantified products from the α-pinene oxidation; pinonic acid, pinic acid and methylbutanetricarboxylic acid (MBTCA) were used to probe the processes influencing aerosol volatility. A major conclusion from the work is that the OH induced ageing can be attributed to gas phase oxidation of products produced in the primary SOA formation process and that there was no indication on significant bulk or surface reactions. The presented results, thus, strongly emphasise the importance of gas phase oxidation of semi- or intermediate-volatile organic compounds (SVOC and IVOC) for atmospheric aerosol ageing.


Sign in / Sign up

Export Citation Format

Share Document