scholarly journals Sources and production of organic aerosol in Mexico City: insights from the combination of a chemical transport model (PMCAMx-2008) and measurements during MILAGRO

2010 ◽  
Vol 10 (11) ◽  
pp. 27925-27965
Author(s):  
A. P. Tsimpidi ◽  
V. A. Karydis ◽  
M. Zavala ◽  
W. Lei ◽  
N. Bei ◽  
...  

Abstract. Urban areas are large sources of organic aerosols and their precursors. Nevertheless, the contributions of primary (POA) and secondary organic aerosol (SOA) to the observed particulate matter levels have been difficult to quantify. In this study the three-dimensional chemical transport model PMCAMx-2008 is used to investigate the temporal and geographic variability of organic aerosol in the Mexico City Metropolitan Area (MCMA) during the MILAGRO campaign that took place in the spring of 2006. The organic module of PMCAMx-2008 is based on the volatility basis-set approach: both primary and secondary organic components are assumed to be semi-volatile and photochemically reactive and are distributed in logarithmically spaced volatility bins. The MCMA emission inventory is modified and the POA emissions are distributed by volatility based on dilution experiments. The model predictions are compared with observations from four different types of sites, an urban (T0), a suburban (T1), a rural (T2), and an elevated site in Pico Tres Padres (PTP). The performance of the model in reproducing organic mass concentrations in these sites was encouraging. The average predicted PM1 OA concentration in T0, T1, and T2 was 18 μg m−3, 11.7 μg m−3, and 10.5 μg m−3 respectively, while the corresponding measured values were 17.2 μg m−3, 11 μg m−3, and 9 μg m−3. The average predicted fresh primary OA concentrations were 4.4 μg m−3 at T0, 1.2 μg m−3 at T1 and 1.7 μg m−3 at PTP in reasonably good agreement with the corresponding PMF analysis estimates based on the AMS observations of 4.5, 1.3, and 2.9 μg m−3 respectively. The model reproduced reasonably well the average oxygenated OA (OOA) levels in T0 (7.5 μg m−3 predicted versus 7.5 μg m−3 measured), in T1 (6.3 μg m−3 predicted versus 4.6 μg m−3 measured) and in PTP (6.6 μg m−3 predicted versus 5.9 μg m−3 measured). Inside Mexico City, the locally produced OA is predicted to be on average 53% fresh primary (POA), 11% semi-volatile (S-SOA) and intermediate volatile (I-SOA) organic aerosol, and 36% traditional SOA from the oxidation of VOCs (V-SOA). The long range transport from biomass burning activities and other sources in Mexico is predicted to contribute on average almost as much as the local sources during the MILAGRO period.

2011 ◽  
Vol 11 (11) ◽  
pp. 5153-5168 ◽  
Author(s):  
A. P. Tsimpidi ◽  
V. A. Karydis ◽  
M. Zavala ◽  
W. Lei ◽  
N. Bei ◽  
...  

Abstract. Urban areas are large sources of organic aerosols and their precursors. Nevertheless, the contributions of primary (POA) and secondary organic aerosol (SOA) to the observed particulate matter levels have been difficult to quantify. In this study the three-dimensional chemical transport model PMCAMx-2008 is used to investigate the temporal and geographic variability of organic aerosol in the Mexico City Metropolitan Area (MCMA) during the MILAGRO campaign that took place in the spring of 2006. The organic module of PMCAMx-2008 includes the recently developed volatility basis-set framework in which both primary and secondary organic components are assumed to be semi-volatile and photochemically reactive and are distributed in logarithmically spaced volatility bins. The MCMA emission inventory is modified and the POA emissions are distributed by volatility based on dilution experiments. The model predictions are compared with observations from four different types of sites, an urban (T0), a suburban (T1), a rural (T2), and an elevated site in Pico de Tres Padres (PTP). The performance of the model in reproducing organic mass concentrations in these sites is encouraging. The average predicted PM1 organic aerosol (OA) concentration in T0, T1, and T2 is 18 μg m−3, 11.7 μg m−3, and 10.5 μg m−3 respectively, while the corresponding measured values are 17.2 μg m−3, 11 μg m−3, and 9 μg m−3. The average predicted locally-emitted primary OA concentrations, 4.4 μg m−3 at T0, 1.2 μg m−3 at T1 and 1.7 μg m−3 at PTP, are in reasonably good agreement with the corresponding PMF analysis estimates based on the Aerosol Mass Spectrometer (AMS) observations of 4.5, 1.3, and 2.9 μg m−3 respectively. The model reproduces reasonably well the average oxygenated OA (OOA) levels in T0 (7.5 μg m−3 predicted versus 7.5 μg m−3 measured), in T1 (6.3 μg m−3 predicted versus 4.6 μg m−3 measured) and in PTP (6.6 μg m−3 predicted versus 5.9 μg m−3 measured). The rest of the OA mass (6.1 μg m−3 and 4.2 μg m−3 in T0 and T1 respectively) is assumed to originate from biomass burning activities and is introduced to the model as part of the boundary conditions. Inside Mexico City (at T0), the locally-produced OA is predicted to be on average 60 % locally-emitted primary (POA), 6 % semi-volatile (S-SOA) and intermediate volatile (I-SOA) organic aerosol, and 34 % traditional SOA from the oxidation of VOCs (V-SOA). The average contributions of the OA components to the locally-produced OA for the entire modelling domain are predicted to be 32 % POA, 10 % S-SOA and I-SOA, and 58 % V-SOA. The long range transport from biomass burning activities and other sources in Mexico is predicted to contribute on average almost as much as the local sources during the MILAGRO period.


2010 ◽  
Vol 10 (2) ◽  
pp. 525-546 ◽  
Author(s):  
A. P. Tsimpidi ◽  
V. A. Karydis ◽  
M. Zavala ◽  
W. Lei ◽  
L. Molina ◽  
...  

Abstract. New primary and secondary organic aerosol modules have been added to PMCAMx, a three dimensional chemical transport model (CTM), for use with the SAPRC99 chemistry mechanism based on recent smog chamber studies. The new modelling framework is based on the volatility basis-set approach: both primary and secondary organic components are assumed to be semivolatile and photochemically reactive and are distributed in logarithmically spaced volatility bins. This new framework with the use of the new volatility basis parameters for low-NOx and high-NOx conditions tends to predict 4–6 times higher anthropogenic SOA concentrations than those predicted with the older generation of models. The resulting PMCAMx-2008 was applied in Mexico City Metropolitan Area (MCMA) for approximately a week during April 2003 during a period of very low regional biomass burning impact. The emission inventory, which uses as a starting point the MCMA 2004 official inventory, is modified and the primary organic aerosol (POA) emissions are distributed by volatility based on dilution experiments. The predicted organic aerosol (OA) concentrations peak in the center of Mexico City, reaching values above 40 μg m−3. The model predictions are compared with the results of the Positive Matrix Factorization (PMF) analysis of the Aerosol Mass Spectrometry (AMS) observations. The model reproduces both Hydrocarbon-like Organic Aerosol (HOA) and Oxygenated Organic Aerosol (OOA) concentrations and diurnal profiles. The small OA underprediction during the rush-hour periods and overprediction in the afternoon suggest potential improvements to the description of fresh primary organic emissions and the formation of the oxygenated organic aerosols, respectively, although they may also be due to errors in the simulation of dispersion and vertical mixing. However, the AMS OOA data are not specific enough to prove that the model reproduces the organic aerosol observations for the right reasons. Other combinations of contributions of primary and secondary organic aerosol production rates may lead to similar results. The model results strongly suggest that, during the simulated period, transport of OA from outside the city was a significant contributor to the observed OA levels. Future simulations should use a larger domain in order to test whether the regional OA can be predicted with current SOA parameterizations. Sensitivity tests indicate that the predicted OA concentration is especially sensitive to the volatility distribution of the emissions in the lower volatility bins.


2020 ◽  
Vol 20 (5) ◽  
pp. 2637-2665 ◽  
Author(s):  
Sidhant J. Pai ◽  
Colette L. Heald ◽  
Jeffrey R. Pierce ◽  
Salvatore C. Farina ◽  
Eloise A. Marais ◽  
...  

Abstract. Chemical transport models have historically struggled to accurately simulate the magnitude and variability of observed organic aerosol (OA), with previous studies demonstrating that models significantly underestimate observed concentrations in the troposphere. In this study, we explore two different model OA schemes within the standard GEOS-Chem chemical transport model and evaluate the simulations against a suite of 15 globally distributed airborne campaigns from 2008 to 2017, primarily in the spring and summer seasons. These include the ATom, KORUS-AQ, GoAmazon, FRAPPE, SEAC4RS, SENEX, DC3, CalNex, OP3, EUCAARI, ARCTAS and ARCPAC campaigns and provide broad coverage over a diverse set of atmospheric composition regimes – anthropogenic, biogenic, pyrogenic and remote. The schemes include significant differences in their treatment of the primary and secondary components of OA – a “simple scheme” that models primary OA (POA) as non-volatile and takes a fixed-yield approach to secondary OA (SOA) formation and a “complex scheme” that simulates POA as semi-volatile and uses a more sophisticated volatility basis set approach for non-isoprene SOA, with an explicit aqueous uptake mechanism to model isoprene SOA. Despite these substantial differences, both the simple and complex schemes perform comparably across the aggregate dataset in their ability to capture the observed variability (with an R2 of 0.41 and 0.44, respectively). The simple scheme displays greater skill in minimizing the overall model bias (with a normalized mean bias of 0.04 compared to 0.30 for the complex scheme). Across both schemes, the model skill in reproducing observed OA is superior to previous model evaluations and approaches the fidelity of the sulfate simulation within the GEOS-Chem model. However, there are significant differences in model performance across different chemical source regimes, classified here into seven categories. Higher-resolution nested regional simulations indicate that model resolution is an important factor in capturing variability in highly localized campaigns, while also demonstrating the importance of well-constrained emissions inventories and local meteorology, particularly over Asia. Our analysis suggests that a semi-volatile treatment of POA is superior to a non-volatile treatment. It is also likely that the complex scheme parameterization overestimates biogenic SOA at the global scale. While this study identifies factors within the SOA schemes that likely contribute to OA model bias (such as a strong dependency of the bias in the complex scheme on relative humidity and sulfate concentrations), comparisons with the skill of the sulfate aerosol scheme in GEOS-Chem indicate the importance of other drivers of bias, such as emissions, transport and deposition, that are exogenous to the OA chemical scheme.


2011 ◽  
Vol 11 (20) ◽  
pp. 10331-10347 ◽  
Author(s):  
C. Fountoukis ◽  
P. N. Racherla ◽  
H. A. C. Denier van der Gon ◽  
P. Polymeneas ◽  
P. E. Charalampidis ◽  
...  

Abstract. PMCAMx-2008, a detailed three-dimensional chemical transport model (CTM), was applied to Europe to simulate the mass concentration and chemical composition of particulate matter (PM) during May 2008. The model includes a state-of-the-art organic aerosol module which is based on the volatility basis set framework treating both primary and secondary organic components as semivolatile and photochemically reactive. The model performance is evaluated against high time resolution aerosol mass spectrometer (AMS) ground and airborne measurements. Overall, organic aerosol is predicted to account for 32% of total PM1 at ground level during May 2008, followed by sulfate (30%), crustal material and sea-salt (14%), ammonium (13%), nitrate (7%), and elemental carbon (4%). The model predicts that fresh primary OA (POA) is a small contributor to organic PM concentrations in Europe during late spring, and that oxygenated species (oxidized primary and biogenic secondary) dominate the ambient OA. The Mediterranean region is the only area in Europe where sulfate concentrations are predicted to be much higher than the OA, while organic matter is predicted to be the dominant PM1 species in central and northern Europe. The comparison of the model predictions with the ground measurements in four measurement stations is encouraging. The model reproduces more than 94% of the daily averaged data and more than 87% of the hourly data within a factor of 2 for PM1 OA. The model tends to predict relatively flat diurnal profiles for PM1 OA in many areas, both rural and urban in agreement with the available measurements. The model performance against the high time resolution airborne measurements at multiple altitudes and locations is as good as its performance against the ground level hourly measurements. There is no evidence of missing sources of OA aloft over Europe during this period.


2020 ◽  
Author(s):  
Georgia N. Theodoritsi ◽  
Giancarlo Ciarelli ◽  
Spyros N. Pandis

Abstract. A source-resolved three-dimensional chemical transport model, PMCAMx-SR, was applied in the continental U.S. to investigate the contribution of the various components (primary and secondary) of biomass burning organic aerosol (bbOA) to organic aerosol levels. Two different schemes based on the volatility basis set were used for the simulation of the bbOA during different seasons. The first is the default scheme of PMCAMx-SR and the second is a recently developed scheme based on laboratory experiments of the bbOA evolution. The simulations with the alternative bbOA scheme predict much higher total bbOA concentrations when compared with the base case ones. This is mainly due to the high emissions of intermediate volatility organic compounds (IVOCs) assumed in the alternative scheme. The oxidation of these compounds is predicted to be a significant source of secondary organic aerosol. The impact of the other parameters that differ in the two schemes is low to negligible. The monthly average maximum predicted concentrations of the alternative bbOA scheme were approximately an order of magnitude higher than those of the default scheme during all seasons. The performance of the two schemes was evaluated against observed total organic aerosol concentrations from several measurement sites across the US. The results were mixed. The default scheme performed better during July and September while the alternative scheme performed a little better during April. These results illustrate the uncertainty of the corresponding predictions, the need to quantify the emissions and reactions of IVOCs from specific biomass sources, and to better constrain the total (primary and secondary) bbOA levels.


2019 ◽  
Author(s):  
Sidhant J. Pai ◽  
Colette L. Heald ◽  
Jeffrey R. Pierce ◽  
Salvatore C. Farina ◽  
Eloise A. Marais ◽  
...  

Abstract. Chemical transport models have historically struggled to accurately simulate the magnitude and variability of observed organic aerosol (OA), with previous studies demonstrating that models significantly underestimate observed concentrations in the troposphere. In this study, we explore two different model OA schemes within the standard GEOS-Chem chemical transport model and evaluate the simulations against a suite of 15 globally-distributed airborne campaigns from 2008–2017. These include the ATom, KORUS-AQ, GoAmazon, FRAPPE, SEAC4RS, SENEX, DC3, CalNex, OP3, EUCAARI, ARCTAS and ARCPAC campaigns and provide broad coverage over a diverse set of atmospheric-composition regimes – anthropogenic, biogenic, pyrogenic and remote. The schemes include significant differences in their treatment of the primary and secondary components of OA – a simple scheme that models primary OA (POA) as non-volatile and takes a fixed-yield approach to secondary OA (SOA) formation, and a complex scheme that simulates POA as semi-volatile and uses a more sophisticated volatility basis set approach for non-isoprene SOA, with an explicit aqueous uptake mechanism to model isoprene SOA. Despite these substantial differences, both the simple and complex schemes perform comparably across the aggregate dataset in their ability to capture the observed variability (with an R2 of 0.41 and 0.44 respectively). The simple scheme displays greater skill in minimizing the overall model-bias (with a NMB of 0.04, compared to 0.29 for the complex scheme). Across both schemes, the model skill in reproducing observed OA is superior to previous model evaluations and approaches the fidelity of the sulfate simulation within GEOS-Chem. However, there are significant differences in model performance across different chemical source regimes, classified here into 7 categories. Higher-resolution nested regional simulations indicate that model resolution is an important factor in capturing variability in highly-localized campaigns, while also demonstrating the importance of well-constrained emissions inventories and local meteorology, particularly over Asia. A comparison of the POA loadings from the complex scheme with SOA loadings from the simple scheme (and vice versa) also suggests that a semi-volatile treatment of POA is superior to a non-volatile treatment. While this study identifies factors within the SOA schemes that likely contribute to OA model bias (such as a strong dependency of the bias in the complex scheme on relative humidity and sulfate concentrations), comparisons with the skill of the sulfate aerosol scheme in GEOS-Chem indicate the importance of other drivers of bias such as emissions, transport, and deposition that are exogenous to the OA chemical scheme.


2011 ◽  
Vol 11 (5) ◽  
pp. 14183-14220 ◽  
Author(s):  
C. Fountoukis ◽  
P. N. Racherla ◽  
H. A. C. Denier van der Gon ◽  
P. Polymeneas ◽  
P. E. Haralabidis ◽  
...  

Abstract. PMCAMx-2008, a detailed three dimensional chemical transport model (CTM), was applied to Europe to simulate the mass concentration and chemical composition of particulate matter (PM) during May 2008. The model includes a state-of-the-art organic aerosol module which is based on the volatility basis set framework treating both primary and secondary organic components to be semivolatile and photochemically reactive. The model performance is evaluated against high time resolution aerosol mass spectrometer (AMS) ground and airborne measurements. Overall, organic aerosol is predicted to account for 32% of total PM1 at ground level during May 2008, followed by sulfate (30%), crustal material and sea-salt (14%), ammonium (13%), nitrate (7%), and elemental carbon (4%). The model predicts that fresh primary OA (POA) is a small contributor to organic PM concentrations in Europe during late spring, and that oxygenated species (oxidized primary and biogenic secondary) dominate the ambient OA. The Mediterranean region is the only area in Europe where sulfate concentrations are predicted to be much higher than the OA, while organic matter is predicted to be the dominant PM1 species in Central and Northern Europe. The comparison of the model predictions with the ground measurements in four measurement stations is encouraging. The model reproduces more than 94% of the daily averaged data and more than 87% of the hourly data within a factor of 2 for PM1 OA. The model tends to predict relatively flat diurnal profiles for PM1 OA in many areas, both rural and urban, in agreement with the available measurements. The model performance against the high time resolution airborne measurements at multiple altitudes and locations is as good as its performance against the ground level hourly measurements. There is no evidence of missing sources of OA aloft over Europe during this period.


2009 ◽  
Vol 9 (3) ◽  
pp. 13693-13737 ◽  
Author(s):  
A. P. Tsimpidi ◽  
V. A. Karydis ◽  
M. Zavala ◽  
W. Lei ◽  
L. Molina ◽  
...  

Abstract. New primary and secondary organic aerosol modules have been added to PMCAMx, a three dimensional chemical transport model (CTM), for use with the SAPRC99 chemistry mechanism based on recent smog chamber studies. The new modeling framework is based on the volatility basis-set approach: both primary and secondary organic components are assumed to be semivolatile and photochemically reactive and are distributed in logarithmically spaced volatility bins. This new framework with the use of the new volatility basis parameters for low-NOx and high-NOx conditions tends to predict 4–6 times higher anthropogenic SOA concentrations than those predicted with older generation of models. The resulting PMCAMx-2008 was applied in Mexico City Metropolitan Area (MCMA) for approximately a week during April of 2003. The emission inventory, which uses as starting point the MCMA 2004 official inventory, is modified and the primary organic aerosol (POA) emissions are distributed by volatility based on dilution experiments. The predicted organic aerosol (OA) concentrations peak in the center of Mexico City reaching values above 40 μg m−3. The model predictions are compared with Aerosol Mass Spectrometry (AMS) observations and their Positive Matrix Factorization (PMF) analysis. The model reproduces both Hydrocarbon-like Organic Aerosol (HOA) and Oxygenated Organic Aerosol (OOA) concentrations and diurnal profiles. The small OA underprediction during the rush hour periods and overprediction in the afternoon suggest potential improvements to the description of fresh primary organic emissions and the formation of the oxygenated organic aerosols respectively, although they may also be due to errors in the simulation of dispersion and vertical mixing. However, the AMS OOA data are not specific enough to prove that the model reproduces the organic aerosol observations for the right reasons. Other combinations of contributions of primary, aged primary, and secondary organic aerosol production rates may lead to similar results. The model results suggest strongly that during the simulated period transport of OA from outside the city was a significant contributor to the observed OA levels. Future simulations should use a larger domain in order to test whether the regional OA can be predicted with current SOA parameterizations. Sensitivity tests indicate that the predicted OA concentration is especially sensitive to the volatility distribution of the emissions in the lower volatility bins.


1999 ◽  
Vol 104 (D9) ◽  
pp. 11755-11781 ◽  
Author(s):  
Eugene V. Rozanov ◽  
Vladimir A. Zubov ◽  
Michael E. Schlesinger ◽  
Fanglin Yang ◽  
Natalia G. Andronova

Sign in / Sign up

Export Citation Format

Share Document