scholarly journals An evaluation of global organic aerosol schemes using airborne observations

2020 ◽  
Vol 20 (5) ◽  
pp. 2637-2665 ◽  
Author(s):  
Sidhant J. Pai ◽  
Colette L. Heald ◽  
Jeffrey R. Pierce ◽  
Salvatore C. Farina ◽  
Eloise A. Marais ◽  
...  

Abstract. Chemical transport models have historically struggled to accurately simulate the magnitude and variability of observed organic aerosol (OA), with previous studies demonstrating that models significantly underestimate observed concentrations in the troposphere. In this study, we explore two different model OA schemes within the standard GEOS-Chem chemical transport model and evaluate the simulations against a suite of 15 globally distributed airborne campaigns from 2008 to 2017, primarily in the spring and summer seasons. These include the ATom, KORUS-AQ, GoAmazon, FRAPPE, SEAC4RS, SENEX, DC3, CalNex, OP3, EUCAARI, ARCTAS and ARCPAC campaigns and provide broad coverage over a diverse set of atmospheric composition regimes – anthropogenic, biogenic, pyrogenic and remote. The schemes include significant differences in their treatment of the primary and secondary components of OA – a “simple scheme” that models primary OA (POA) as non-volatile and takes a fixed-yield approach to secondary OA (SOA) formation and a “complex scheme” that simulates POA as semi-volatile and uses a more sophisticated volatility basis set approach for non-isoprene SOA, with an explicit aqueous uptake mechanism to model isoprene SOA. Despite these substantial differences, both the simple and complex schemes perform comparably across the aggregate dataset in their ability to capture the observed variability (with an R2 of 0.41 and 0.44, respectively). The simple scheme displays greater skill in minimizing the overall model bias (with a normalized mean bias of 0.04 compared to 0.30 for the complex scheme). Across both schemes, the model skill in reproducing observed OA is superior to previous model evaluations and approaches the fidelity of the sulfate simulation within the GEOS-Chem model. However, there are significant differences in model performance across different chemical source regimes, classified here into seven categories. Higher-resolution nested regional simulations indicate that model resolution is an important factor in capturing variability in highly localized campaigns, while also demonstrating the importance of well-constrained emissions inventories and local meteorology, particularly over Asia. Our analysis suggests that a semi-volatile treatment of POA is superior to a non-volatile treatment. It is also likely that the complex scheme parameterization overestimates biogenic SOA at the global scale. While this study identifies factors within the SOA schemes that likely contribute to OA model bias (such as a strong dependency of the bias in the complex scheme on relative humidity and sulfate concentrations), comparisons with the skill of the sulfate aerosol scheme in GEOS-Chem indicate the importance of other drivers of bias, such as emissions, transport and deposition, that are exogenous to the OA chemical scheme.

2019 ◽  
Author(s):  
Sidhant J. Pai ◽  
Colette L. Heald ◽  
Jeffrey R. Pierce ◽  
Salvatore C. Farina ◽  
Eloise A. Marais ◽  
...  

Abstract. Chemical transport models have historically struggled to accurately simulate the magnitude and variability of observed organic aerosol (OA), with previous studies demonstrating that models significantly underestimate observed concentrations in the troposphere. In this study, we explore two different model OA schemes within the standard GEOS-Chem chemical transport model and evaluate the simulations against a suite of 15 globally-distributed airborne campaigns from 2008–2017. These include the ATom, KORUS-AQ, GoAmazon, FRAPPE, SEAC4RS, SENEX, DC3, CalNex, OP3, EUCAARI, ARCTAS and ARCPAC campaigns and provide broad coverage over a diverse set of atmospheric-composition regimes – anthropogenic, biogenic, pyrogenic and remote. The schemes include significant differences in their treatment of the primary and secondary components of OA – a simple scheme that models primary OA (POA) as non-volatile and takes a fixed-yield approach to secondary OA (SOA) formation, and a complex scheme that simulates POA as semi-volatile and uses a more sophisticated volatility basis set approach for non-isoprene SOA, with an explicit aqueous uptake mechanism to model isoprene SOA. Despite these substantial differences, both the simple and complex schemes perform comparably across the aggregate dataset in their ability to capture the observed variability (with an R2 of 0.41 and 0.44 respectively). The simple scheme displays greater skill in minimizing the overall model-bias (with a NMB of 0.04, compared to 0.29 for the complex scheme). Across both schemes, the model skill in reproducing observed OA is superior to previous model evaluations and approaches the fidelity of the sulfate simulation within GEOS-Chem. However, there are significant differences in model performance across different chemical source regimes, classified here into 7 categories. Higher-resolution nested regional simulations indicate that model resolution is an important factor in capturing variability in highly-localized campaigns, while also demonstrating the importance of well-constrained emissions inventories and local meteorology, particularly over Asia. A comparison of the POA loadings from the complex scheme with SOA loadings from the simple scheme (and vice versa) also suggests that a semi-volatile treatment of POA is superior to a non-volatile treatment. While this study identifies factors within the SOA schemes that likely contribute to OA model bias (such as a strong dependency of the bias in the complex scheme on relative humidity and sulfate concentrations), comparisons with the skill of the sulfate aerosol scheme in GEOS-Chem indicate the importance of other drivers of bias such as emissions, transport, and deposition that are exogenous to the OA chemical scheme.


2011 ◽  
Vol 11 (11) ◽  
pp. 5153-5168 ◽  
Author(s):  
A. P. Tsimpidi ◽  
V. A. Karydis ◽  
M. Zavala ◽  
W. Lei ◽  
N. Bei ◽  
...  

Abstract. Urban areas are large sources of organic aerosols and their precursors. Nevertheless, the contributions of primary (POA) and secondary organic aerosol (SOA) to the observed particulate matter levels have been difficult to quantify. In this study the three-dimensional chemical transport model PMCAMx-2008 is used to investigate the temporal and geographic variability of organic aerosol in the Mexico City Metropolitan Area (MCMA) during the MILAGRO campaign that took place in the spring of 2006. The organic module of PMCAMx-2008 includes the recently developed volatility basis-set framework in which both primary and secondary organic components are assumed to be semi-volatile and photochemically reactive and are distributed in logarithmically spaced volatility bins. The MCMA emission inventory is modified and the POA emissions are distributed by volatility based on dilution experiments. The model predictions are compared with observations from four different types of sites, an urban (T0), a suburban (T1), a rural (T2), and an elevated site in Pico de Tres Padres (PTP). The performance of the model in reproducing organic mass concentrations in these sites is encouraging. The average predicted PM1 organic aerosol (OA) concentration in T0, T1, and T2 is 18 μg m−3, 11.7 μg m−3, and 10.5 μg m−3 respectively, while the corresponding measured values are 17.2 μg m−3, 11 μg m−3, and 9 μg m−3. The average predicted locally-emitted primary OA concentrations, 4.4 μg m−3 at T0, 1.2 μg m−3 at T1 and 1.7 μg m−3 at PTP, are in reasonably good agreement with the corresponding PMF analysis estimates based on the Aerosol Mass Spectrometer (AMS) observations of 4.5, 1.3, and 2.9 μg m−3 respectively. The model reproduces reasonably well the average oxygenated OA (OOA) levels in T0 (7.5 μg m−3 predicted versus 7.5 μg m−3 measured), in T1 (6.3 μg m−3 predicted versus 4.6 μg m−3 measured) and in PTP (6.6 μg m−3 predicted versus 5.9 μg m−3 measured). The rest of the OA mass (6.1 μg m−3 and 4.2 μg m−3 in T0 and T1 respectively) is assumed to originate from biomass burning activities and is introduced to the model as part of the boundary conditions. Inside Mexico City (at T0), the locally-produced OA is predicted to be on average 60 % locally-emitted primary (POA), 6 % semi-volatile (S-SOA) and intermediate volatile (I-SOA) organic aerosol, and 34 % traditional SOA from the oxidation of VOCs (V-SOA). The average contributions of the OA components to the locally-produced OA for the entire modelling domain are predicted to be 32 % POA, 10 % S-SOA and I-SOA, and 58 % V-SOA. The long range transport from biomass burning activities and other sources in Mexico is predicted to contribute on average almost as much as the local sources during the MILAGRO period.


2010 ◽  
Vol 10 (11) ◽  
pp. 27925-27965
Author(s):  
A. P. Tsimpidi ◽  
V. A. Karydis ◽  
M. Zavala ◽  
W. Lei ◽  
N. Bei ◽  
...  

Abstract. Urban areas are large sources of organic aerosols and their precursors. Nevertheless, the contributions of primary (POA) and secondary organic aerosol (SOA) to the observed particulate matter levels have been difficult to quantify. In this study the three-dimensional chemical transport model PMCAMx-2008 is used to investigate the temporal and geographic variability of organic aerosol in the Mexico City Metropolitan Area (MCMA) during the MILAGRO campaign that took place in the spring of 2006. The organic module of PMCAMx-2008 is based on the volatility basis-set approach: both primary and secondary organic components are assumed to be semi-volatile and photochemically reactive and are distributed in logarithmically spaced volatility bins. The MCMA emission inventory is modified and the POA emissions are distributed by volatility based on dilution experiments. The model predictions are compared with observations from four different types of sites, an urban (T0), a suburban (T1), a rural (T2), and an elevated site in Pico Tres Padres (PTP). The performance of the model in reproducing organic mass concentrations in these sites was encouraging. The average predicted PM1 OA concentration in T0, T1, and T2 was 18 μg m−3, 11.7 μg m−3, and 10.5 μg m−3 respectively, while the corresponding measured values were 17.2 μg m−3, 11 μg m−3, and 9 μg m−3. The average predicted fresh primary OA concentrations were 4.4 μg m−3 at T0, 1.2 μg m−3 at T1 and 1.7 μg m−3 at PTP in reasonably good agreement with the corresponding PMF analysis estimates based on the AMS observations of 4.5, 1.3, and 2.9 μg m−3 respectively. The model reproduced reasonably well the average oxygenated OA (OOA) levels in T0 (7.5 μg m−3 predicted versus 7.5 μg m−3 measured), in T1 (6.3 μg m−3 predicted versus 4.6 μg m−3 measured) and in PTP (6.6 μg m−3 predicted versus 5.9 μg m−3 measured). Inside Mexico City, the locally produced OA is predicted to be on average 53% fresh primary (POA), 11% semi-volatile (S-SOA) and intermediate volatile (I-SOA) organic aerosol, and 36% traditional SOA from the oxidation of VOCs (V-SOA). The long range transport from biomass burning activities and other sources in Mexico is predicted to contribute on average almost as much as the local sources during the MILAGRO period.


2012 ◽  
Vol 12 (2) ◽  
pp. 5939-6018
Author(s):  
C. A. Stroud ◽  
M. D. Moran ◽  
P. A. Makar ◽  
S. Gong ◽  
W. Gong ◽  
...  

Abstract. Observations from the 2007 Border Air Quality and Meteorology Study (BAQS-Met 2007) in southern Ontario (ON), Canada, were used to evaluate Environment Canada's regional chemical transport model predictions of primary organic aerosol (POA). Environment Canada's operational numerical weather prediction model and the 2006 Canadian and 2005 US national emissions inventories were used as input to the chemical transport model (named AURAMS). Particle-component-based factor analysis was applied to aerosol mass spectrometer measurements made at one urban site (Windsor, ON) and two rural sites (Harrow and Bear Creek, ON) to derive hydrocarbon-like organic aerosol (HOA) factors. Co-located carbon monoxide (CO), PM2.5 black carbon (BC), and PM1 SO4 measurements were also used for evaluation and interpretation, permitting a detailed diagnostic model evaluation. At the urban site, good agreement was observed for the comparison of daytime campaign PM1 POA and HOA mean values: 1.1 μg m−3 vs. 1.2 μg m−3, respectively. However, a POA overprediction was evident on calm nights due to an overly-stable model surface layer. Biases in model POA predictions trended from positive to negative with increasing HOA values. This trend has several possible explanations, including (1) underweighting of urban locations in particulate matter (PM) spatial surrogate fields, (2) overly-coarse model grid spacing for resolving urban-scale sources, and (3) lack of a model particle POA evaporation process during dilution of vehicular POA tail-pipe emissions to urban scales. Furthermore, a trend in POA bias was observed at the urban site as a function of the BC/HOA ratio, suggesting a possible association of POA underprediction for diesel combustion sources. For several time periods, POA overprediction was also observed for sulphate-rich plumes, suggesting that our model POA fractions for the PM2.5 chemical speciation profiles may be too high for these point sources. At the rural Harrow site, significant underpredictions in PM1 POA concentration were found compared to observed HOA concentration and were associated, based on back-trajectory analysis, with (1) transport from the Detroit/Windsor urban complex, (2) longer-range transport from the US Midwest, and (3) biomass burning. Daytime CO concentrations were significantly overpredicted at Windsor but were unbiased at Harrow. Collectively, these biases provide support for a hypothesis that combines a current underweighting of PM spatial surrogate fields for urban locations with insufficient model vertical mixing for sources close to the urban measurement sites. The magnitude of the area POA emissions sources in the US and Canadian inventories (e.g., food cooking, road and soil dust, waste disposal burning) suggests that more effort should be placed at reducing uncertainties in these sectors, especially spatial and temporal surrogates.


2017 ◽  
Author(s):  
Adrian M. Maclean ◽  
Christopher L. Butenhoff ◽  
James W. Grayson ◽  
Kelley Barsanti ◽  
Jose L. Jimenez ◽  
...  

Abstract. When simulating the formation and life cycle of secondary organic aerosol (SOA) with chemical transport models, it is often assumed that organic molecules are well mixed within SOA particles on the time scale of 1 h. While this assumption has been debated vigorously in the literature, the issue remains unresolved in part due to a lack of information on the mixing times within SOA particles as a function of both temperature and relative humidity. Using laboratory data, meteorological fields and a chemical transport model, we determine how often mixing times are


2012 ◽  
Vol 5 (4) ◽  
pp. 4187-4232 ◽  
Author(s):  
A. Mahmud ◽  
K. C. Barsanti

Abstract. The secondary organic aerosol (SOA) module in the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4) has been updated by replacing existing two-product (2p) parameters with those obtained from two-product volatility basis set (2p-VBS) fits, and by treating SOA formation from the following volatile organic compounds (VOCs): isoprene, propene and lumped alkenes. Strong seasonal and spatial variations in global SOA distributions were demonstrated, with significant differences in the predicted concentrations between the base-case and updated model versions. The base-case MOZART-4 predicted annual average SOA of 0.36 ± 0.50 μg m−3 in South America, 0.31 ± 0.38 μg m−3 in Indonesia, 0.09 ± 0.05 μg m−3 in the USA, and 0.12 ± 0.07 μg m−3 in Europe. Concentrations from the updated versions of the model showed a~marked increase in annual average SOA. Using the updated set of parameters alone (MZ4-v1) increased annual average SOA by ~8%, ~16%, ~56%, and ~108% from the base-case in South America, Indonesia, USA, and Europe, respectively. Treatment of additional parent VOCs (MZ4-v2) resulted in an even more dramatic increase of ~178–406% in annual average SOA for these regions over the base-case. The increases in predicted SOA concentrations further resulted in increases in corresponding SOA contributions to annual average total aerosol optical depth (AOD) by <1% for MZ4-v1 and ~1–6% for MZ4-v2. Estimated global SOA production was ~6.6 Tg yr−1 and ~19.1 Tg yr−1 with corresponding burdens of ~0.24 Tg and ~0.59 Tg using MZ4-v1 and MZ4-v2, respectively. The SOA budgets predicted in the current study fall well within reported ranges for similar modeling studies, 6.7 to 96 Tg yr−1, but are lower than recently reported observationally-constrained values, 50 to 380 Tg yr−1. With MZ4-v2, simulated SOA concentrations at the surface were also in reasonable agreement with comparable modeling studies and observations. Concentrations of estimated organic aerosol (OA) at the surface, however, showed under-prediction in Europe and over-prediction in the Amazonian regions and Malaysian Borneo during certain months of the year. Overall, the updated version of MOZART-4, MZ4-v2, showed consistently better skill in predicting SOA and OA levels and spatial distributions as compared with unmodified MOZART-4. The MZ4-v2 updates may be particularly important when MOZART-4 output is used to generate boundary conditions for regional air quality simulations that require more accurate representation of SOA concentrations and distributions.


2012 ◽  
Vol 12 (18) ◽  
pp. 8499-8527 ◽  
Author(s):  
R. Bergström ◽  
H. A. C. Denier van der Gon ◽  
A. S. H. Prévôt ◽  
K. E. Yttri ◽  
D. Simpson

Abstract. A new organic aerosol module has been implemented into the EMEP chemical transport model. Four different volatility basis set (VBS) schemes have been tested in long-term simulations for Europe, covering the six years 2002–2007. Different assumptions regarding partitioning of primary organic aerosol and aging of primary semi-volatile and intermediate volatility organic carbon (S/IVOC) species and secondary organic aerosol (SOA) have been explored. Model results are compared to filter measurements, aerosol mass spectrometry (AMS) data and source apportionment studies, as well as to other model studies. The present study indicates that many different sources contribute significantly to organic aerosol in Europe. Biogenic and anthropogenic SOA, residential wood combustion and vegetation fire emissions may all contribute more than 10% each over substantial parts of Europe. This study shows smaller contributions from biogenic SOA to organic aerosol in Europe than earlier work, but relatively greater anthropogenic SOA. Simple VBS based organic aerosol models can give reasonably good results for summer conditions but more observational studies are needed to constrain the VBS parameterisations and to help improve emission inventories. The volatility distribution of primary emissions is one important issue for further work. Emissions of volatile organic compounds from biogenic sources are also highly uncertain and need further validation. We can not reproduce winter levels of organic aerosol in Europe, and there are many indications that the present emission inventories substantially underestimate emissions from residential wood combustion in large parts of Europe.


2010 ◽  
Vol 10 (2) ◽  
pp. 525-546 ◽  
Author(s):  
A. P. Tsimpidi ◽  
V. A. Karydis ◽  
M. Zavala ◽  
W. Lei ◽  
L. Molina ◽  
...  

Abstract. New primary and secondary organic aerosol modules have been added to PMCAMx, a three dimensional chemical transport model (CTM), for use with the SAPRC99 chemistry mechanism based on recent smog chamber studies. The new modelling framework is based on the volatility basis-set approach: both primary and secondary organic components are assumed to be semivolatile and photochemically reactive and are distributed in logarithmically spaced volatility bins. This new framework with the use of the new volatility basis parameters for low-NOx and high-NOx conditions tends to predict 4–6 times higher anthropogenic SOA concentrations than those predicted with the older generation of models. The resulting PMCAMx-2008 was applied in Mexico City Metropolitan Area (MCMA) for approximately a week during April 2003 during a period of very low regional biomass burning impact. The emission inventory, which uses as a starting point the MCMA 2004 official inventory, is modified and the primary organic aerosol (POA) emissions are distributed by volatility based on dilution experiments. The predicted organic aerosol (OA) concentrations peak in the center of Mexico City, reaching values above 40 μg m−3. The model predictions are compared with the results of the Positive Matrix Factorization (PMF) analysis of the Aerosol Mass Spectrometry (AMS) observations. The model reproduces both Hydrocarbon-like Organic Aerosol (HOA) and Oxygenated Organic Aerosol (OOA) concentrations and diurnal profiles. The small OA underprediction during the rush-hour periods and overprediction in the afternoon suggest potential improvements to the description of fresh primary organic emissions and the formation of the oxygenated organic aerosols, respectively, although they may also be due to errors in the simulation of dispersion and vertical mixing. However, the AMS OOA data are not specific enough to prove that the model reproduces the organic aerosol observations for the right reasons. Other combinations of contributions of primary and secondary organic aerosol production rates may lead to similar results. The model results strongly suggest that, during the simulated period, transport of OA from outside the city was a significant contributor to the observed OA levels. Future simulations should use a larger domain in order to test whether the regional OA can be predicted with current SOA parameterizations. Sensitivity tests indicate that the predicted OA concentration is especially sensitive to the volatility distribution of the emissions in the lower volatility bins.


Sign in / Sign up

Export Citation Format

Share Document