scholarly journals Temporal and spatial characteristics of ozone depletion events from measurements in the Arctic

2013 ◽  
Vol 13 (11) ◽  
pp. 30233-30285 ◽  
Author(s):  
J. W. Halfacre ◽  
T. N. Knepp ◽  
P. B. Shepson ◽  
C. R. Stephens ◽  
K. A. Pratt ◽  
...  

Abstract. Following polar sunrise in the Arctic springtime, tropospheric ozone episodically decreases rapidly to near zero levels during ozone depletion events (ODEs). Many uncertainties remain in our understanding of ODE characteristics, including the temporal and spatial scales, as well as environmental drivers. Measurements of ozone, bromine monoxide (BrO), and meteorology were obtained during several deployments of autonomous, ice-tethered buoys (O-Buoys) from both coastal sites and over the Arctic Ocean; these data were used to characterize observed ODEs. Detected decreases in surface ozone levels during the onset of ODEs corresponded to a median estimated apparent ozone depletion timescale (based on chemistry and the advection of O3-depleted air) of 11 h. If assumed to be dominated by chemistry, these timescales would correspond to larger-than-observed BrO mole fractions based on known chemical mechanisms and assumed other radical levels. Using backward air mass trajectories, the spatial scales for ODEs (defined by time periods in which ozone mole fraction ≤15 nmol mol−1) were estimated to be ~900 km (median), while areas estimated to represent major ozone depletions (<10 nmol mol−1) had dimensions of ~280 km (median). These observations point to a heterogeneous boundary layer with localized regions of active, ozone-destroying halogen chemistry, interspersed among larger regions of previously depleted air that retain reduced ozone levels through hindered atmospheric mixing. Based on the estimated size distribution, Monte Carlo simulations showed it was statistically possible that all ODEs observed could have originated upwind, followed by transport to the measurement site. Local wind speed averages were low during most ODEs (median of ~3.6 m s−1), and there was no apparent dependence on local temperature.

2014 ◽  
Vol 14 (10) ◽  
pp. 4875-4894 ◽  
Author(s):  
J. W. Halfacre ◽  
T. N. Knepp ◽  
P. B. Shepson ◽  
C. R. Thompson ◽  
K. A. Pratt ◽  
...  

Abstract. Following polar sunrise in the Arctic springtime, tropospheric ozone episodically decreases rapidly to near-zero levels during ozone depletion events (ODEs). Many uncertainties remain in our understanding of ODE characteristics, including the temporal and spatial scales, as well as environmental drivers. Measurements of ozone, bromine monoxide (BrO), and meteorology were obtained during several deployments of autonomous, ice-tethered buoys (O-Buoys) from both coastal sites and over the Arctic Ocean; these data were used to characterize observed ODEs. Detected decreases in surface ozone levels during the onset of ODEs corresponded to a median estimated apparent ozone depletion timescale (based on both chemistry and the advection of O3-depleted air) of 11 h. If assumed to be dominated by chemical mechanisms, these timescales would correspond to larger-than-observed BrO mole fractions based on known chemistry and assumed other radical levels. Using backward air mass trajectories and an assumption that transport mechanisms dominate observations, the spatial scales for ODEs (defined by time periods in which ozone levels ≤15 nmol mol−1) were estimated to be 877 km (median), while areas estimated to represent major ozone depletions (<10 nmol mol−1) had dimensions of 282 km (median). These observations point to a heterogeneous boundary layer with localized regions of active, ozone-destroying halogen chemistry, interspersed among larger regions of previously depleted air that retain reduced ozone levels through hindered atmospheric mixing. Based on the estimated size distribution, Monte Carlo simulations showed it was statistically possible that all ODEs observed could have originated upwind, followed by transport to the measurement site. Local wind speed averages were low during most ODEs (median of ~3.6 m s−1), and there was no apparent dependence on local temperature.


2015 ◽  
Vol 15 (16) ◽  
pp. 9651-9679 ◽  
Author(s):  
C. R. Thompson ◽  
P. B. Shepson ◽  
J. Liao ◽  
L. G. Huey ◽  
E. C. Apel ◽  
...  

Abstract. The springtime depletion of tropospheric ozone in the Arctic is known to be caused by active halogen photochemistry resulting from halogen atom precursors emitted from snow, ice, or aerosol surfaces. The role of bromine in driving ozone depletion events (ODEs) has been generally accepted, but much less is known about the role of chlorine radicals in ozone depletion chemistry. While the potential impact of iodine in the High Arctic is more uncertain, there have been indications of active iodine chemistry through observed enhancements in filterable iodide, probable detection of tropospheric IO, and recently, observation of snowpack photochemical production of I2. Despite decades of research, significant uncertainty remains regarding the chemical mechanisms associated with the bromine-catalyzed depletion of ozone, as well as the complex interactions that occur in the polar boundary layer due to halogen chemistry. To investigate this, we developed a zero-dimensional photochemical model, constrained with measurements from the 2009 OASIS field campaign in Barrow, Alaska. We simulated a 7-day period during late March that included a full ozone depletion event lasting 3 days and subsequent ozone recovery to study the interactions of halogen radicals under these different conditions. In addition, the effects of iodine added to our Base Model were investigated. While bromine atoms were primarily responsible for ODEs, chlorine and iodine were found to enhance the depletion rates and iodine was found to be more efficient per atom at depleting ozone than Br. The interaction between chlorine and bromine is complex, as the presence of chlorine can increase the recycling and production of Br atoms, while also increasing reactive bromine sinks under certain conditions. Chlorine chemistry was also found to have significant impacts on both HO2 and RO2, with organic compounds serving as the primary reaction partner for Cl atoms. The results of this work highlight the need for future studies on the production mechanisms of Br2 and Cl2, as well as on the potential impact of iodine in the High Arctic.


2014 ◽  
Vol 14 (21) ◽  
pp. 28685-28755 ◽  
Author(s):  
C. R. Thompson ◽  
P. B. Shepson ◽  
J. Liao ◽  
L. G. Huey ◽  
E. C. Apel ◽  
...  

Abstract. The springtime depletion of tropospheric ozone in the Arctic is known to be caused by active halogen photochemistry resulting from halogen atom precursors emitted from snow, ice, or aerosol surfaces. The role of bromine in driving ozone depletion events (ODEs) has been generally accepted, but much less is known about the role of chlorine radicals in ozone depletion chemistry. While the potential impact of iodine in the High Arctic is more uncertain, there have been indications of active iodine chemistry through observed enhancements in filterable iodide, probable detection of tropospheric IO, and recently, detection of atmospheric I2. Despite decades of research, significant uncertainty remains regarding the chemical mechanisms associated with the bromine-catalyzed depletion of ozone, as well as the complex interactions that occur in the polar boundary layer due to halogen chemistry. To investigate this, we developed a zero-dimensional photochemical model, constrained with measurements from the 2009 OASIS field campaign in Barrow, Alaska. We simulated a 7 day period during late March that included a full ozone depletion event lasting 3 days and subsequent ozone recovery to study the interactions of halogen radicals under these different conditions. In addition, the effects of iodine added to our base model were investigated. While bromine atoms were primarily responsible for ODEs, chlorine and iodine were found to enhance the depletion rates and iodine was found to be more efficient per atom at depleting ozone than Br. The interaction between chlorine and bromine is complex, as the presence of chlorine can increase the recycling and production of Br atoms, while also increasing reactive bromine sinks under certain conditions. Chlorine chemistry was also found to have significant impacts on both HO2 and RO2. The results of this work highlight the need for future studies on the production mechanisms of Br2 and Cl2, as well as on the potential impact of iodine in the High Arctic.


2009 ◽  
Vol 9 (2) ◽  
pp. 8561-8586
Author(s):  
J. W. Bottenheim ◽  
S. Netcheva ◽  
S. Morin ◽  
S. V. Nghiem

Abstract. A full year of measurements of surface ozone over the Arctic Ocean far removed from land is presented (81° N – 88° N latitude). The data were obtained during the drift of the French schooner TARA between September 2006 and January 2008, while frozen in the Arctic Ocean. The data confirm that long periods of virtually total absence of ozone occur in the spring (mid March to mid June) after Polar sunrise. At other times of the year ozone concentrations are comparable to other oceanic observations with winter mole fractions of ca. 30–40 nmol mol−1 and summer minima of ca. 20 nmol mol−1. Contrary to earlier observations from ozone sonde data obtained at Arctic coastal observatories, the ambient temperature was well above −20°C during most ODEs (ozone depletion episodes). Backwards trajectory calculations suggest that during these ODEs the air had previously been in contact with the frozen ocean surface for several days and originated largely from the Siberian coast where several large open flaw leads developed in the spring of 2007.


2020 ◽  
Author(s):  
Yee Jun Tham ◽  
Nina Sarnela ◽  
Carlos A. Cuevas ◽  
Iyer Siddharth ◽  
Lisa Beck ◽  
...  

&lt;p&gt;Atmospheric halogens chemistry like the catalytic reaction of bromine and chlorine radicals with ozone (O&lt;sub&gt;3&lt;/sub&gt;) has been known to cause the springtime surface-ozone destruction in the polar region. Although the initial atmospheric reactions of chlorine with ozone are well understood, the &amp;#64257;nal oxidation steps leading to the formation of chlorate (ClO&lt;sub&gt;3&lt;/sub&gt;&lt;sup&gt;-&lt;/sup&gt;) and perchlorate (ClO&lt;sub&gt;4&lt;/sub&gt;&lt;sup&gt;-&lt;/sup&gt;) remain unclear due to the lack of direct evidence of their presence and fate in the atmosphere. In this study, we present the first high-resolution ambient data set of gas-phase HClO&lt;sub&gt;3&lt;/sub&gt; (chloric acid) and HClO&lt;sub&gt;4&lt;/sub&gt; (perchlorate acid) obtained from the field measurement at the Villum Research Station, Station Nord, in high arctic North Greenland (81&amp;#176;36&amp;#8217; N, 16&amp;#176;40&amp;#8217; W) during the spring of 2015. A state-of-the-art chemical ionization atmospheric pressure interface time-of-flight mass spectrometer (CI-APi-TOF) was used in negative ion mode with nitrate ion as the reagent ion to detect the gas-phase HClO&lt;sub&gt;3&lt;/sub&gt; and HClO&lt;sub&gt;4&lt;/sub&gt;. We measured significant level of HClO&lt;sub&gt;3&lt;/sub&gt; and HClO&lt;sub&gt;4&lt;/sub&gt; only during the springtime ozone depletion events in the Greenland, with concentration up to 9x10&lt;sup&gt;5&lt;/sup&gt; molecule cm&lt;sup&gt;-3&lt;/sup&gt;. Air mass trajectory analysis shows that the air during the ozone depletion event was confined to near-surface, indicating that the O&lt;sub&gt;3&lt;/sub&gt; and surface of sea-ice/snowpack may play important roles in the formation of HClO&lt;sub&gt;3&lt;/sub&gt; and HClO&lt;sub&gt;4&lt;/sub&gt;. We used high-level quantum-chemical methods to calculate the ultraviolet-visible absorption spectra and cross-section of HClO&lt;sub&gt;3&lt;/sub&gt; and HClO&lt;sub&gt;4&lt;/sub&gt; in the gas-phase to assess their fates in the atmosphere. Overall, our results reveal the presence of HClO&lt;sub&gt;3&lt;/sub&gt; and HClO&lt;sub&gt;4&lt;/sub&gt; during ozone depletion events, which could affect the chlorine chemistry in the Arctic atmosphere.&lt;/p&gt;


2017 ◽  
Vol 17 (24) ◽  
pp. 14955-14974 ◽  
Author(s):  
Xiaoyi Zhao ◽  
Dan Weaver ◽  
Kristof Bognar ◽  
Gloria Manney ◽  
Luis Millán ◽  
...  

Abstract. Ground-based, satellite, and reanalysis datasets were used to identify two similar cyclone-induced surface ozone depletion events at Eureka, Canada (80.1° N, 86.4° W), in March 2007 and April 2011. These two events were coincident with observations of hydrogen deuterium oxide (HDO) depletion, indicating that condensation and sublimation occurred during the transport of the ozone-depleted air masses. Ice clouds (vapour and crystals) and aerosols were detected by lidar and radar when the ozone- and HDO-depleted air masses arrived over Eureka. For the 2007 event, an ice cloud layer was coincident with an aloft ozone depletion layer at 870 m altitude on 2–3 March, indicating this ice cloud layer contained bromine-enriched blowing-snow particles. Over the following 3 days, a shallow surface ozone depletion event (ODE) was observed at Eureka after the precipitation of bromine-enriched particles onto the local snowpack. A chemistry–climate model (UKCA) and a chemical transport model (pTOMCAT) were used to simulate the surface ozone depletion events. Incorporating the latest surface snow salinity data obtained for the Weddell Sea into the models resulted in improved agreement between the modelled and measured BrO concentrations above Eureka. MERRA-2 global reanalysis data and the FLEXPART particle dispersion model were used to study the link between the ozone and HDO depletion. In general, the modelled ozone and BrO showed good agreement with the ground-based observations; however, the modelled BrO and ozone in the near-surface layer are quite sensitive to the snow salinity. HDO depletion observed during these two blowing-snow ODEs was found to be weaker than pure Rayleigh fractionation. This work provides evidence of a blowing-snow sublimation process, which is a key step in producing bromine-enriched sea-salt aerosol.


2020 ◽  
Author(s):  
Kerri Pratt ◽  
Siyuan Wang ◽  
Stephen McNamara ◽  
Christopher Moore ◽  
Daniel Obrist ◽  
...  

&lt;p&gt;Bromine atoms play a central role in atmospheric reactive halogen chemistry, depleting ozone and elemental mercury, thereby enhancing deposition of toxic mercury, particularly in the Arctic near-surface troposphere. Yet, direct bromine atom measurements have been missing to date, due to the lack of analytical capability with sufficient sensitivity for ambient measurements. Here we present direct atmospheric bromine atom measurements, conducted in the springtime Arctic near Utqiagvik, Alaska in March 2012. Measured bromine atom levels reached up to 14 ppt (4.2&lt;strong&gt;&amp;#215;&lt;/strong&gt;10&lt;sup&gt;8 &lt;/sup&gt;atoms cm&lt;sup&gt;-3&lt;/sup&gt;) and were up to 3-10 higher than estimates using previous indirect measurements not considering the critical role of molecular bromine. Observed ozone and elemental mercury depletion rates are quantitatively explained by the measured bromine atoms, providing field validation of highly uncertain mercury chemistry. Following complete ozone depletion, elevated bromine concentrations are sustained by photochemical snowpack emissions of molecular bromine and nitrogen oxides, resulting in continued atmospheric mercury depletion. This study shows that measured bromine atoms, resulting from photochemical snowpack production of molecular bromine, can quantitatively explain ozone and mercury loss in the near-surface polar atmosphere.&lt;/p&gt;


2007 ◽  
Vol 7 (5) ◽  
pp. 1451-1469 ◽  
Author(s):  
S. Morin ◽  
J. Savarino ◽  
S. Bekki ◽  
S. Gong ◽  
J. W. Bottenheim

Abstract. We report the first measurements of the oxygen isotope anomaly of atmospheric inorganic nitrate from the Arctic. Nitrate samples and complementary data were collected at Alert, Nunavut, Canada (82°30 ' N, 62°19 ' W) in spring 2004. Covering the polar sunrise period, characterized by the occurrence of severe boundary layer ozone depletion events (ODEs), our data show a significant correlation between the variations of atmospheric ozone (O3) mixing ratios and Δ17O of nitrate (Δ17O(NO−3)). This relationship can be expressed as: Δ17O(NO−3)/‰, =(0.15±0.03)×O3/(nmol mol–1)+(29.7±0.7), with R2=0.70(n=12), for Δ17O(NO−3) ranging between 29 and 35 ‰. We derive mass-balance equations from chemical reactions operating in the Arctic boundary layer, that describe the evolution of Δ17O(NO−3) as a function of the concentrations of reactive species and their isotopic characteristics. Changes in the relative importance of O3, RO2 and BrO in the oxidation of NO during ODEs, and the large isotope anomalies of O3 and BrO, are the driving force for the variability in the measured Δ17O(NO−3) . BrONO2 hydrolysis is found to be a dominant source of nitrate in the Arctic boundary layer, in agreement with recent modeling studies.


2011 ◽  
Vol 11 (8) ◽  
pp. 3949-3979 ◽  
Author(s):  
K. Toyota ◽  
J. C. McConnell ◽  
A. Lupu ◽  
L. Neary ◽  
C. A. McLinden ◽  
...  

Abstract. Episodes of high bromine levels and surface ozone depletion in the springtime Arctic are simulated by an online air-quality model, GEM-AQ, with gas-phase and heterogeneous reactions of inorganic bromine species and a simple scheme of air-snowpack chemical interactions implemented for this study. Snowpack on sea ice is assumed to be the only source of bromine to the atmosphere and to be capable of converting relatively stable bromine species to photolabile Br2 via air-snowpack interactions. A set of sensitivity model runs are performed for April 2001 at a horizontal resolution of approximately 100 km×100 km in the Arctic, to provide insights into the effects of temperature and the age (first-year, FY, versus multi-year, MY) of sea ice on the release of reactive bromine to the atmosphere. The model simulations capture much of the temporal variations in surface ozone mixing ratios as observed at stations in the high Arctic and the synoptic-scale evolution of areas with enhanced BrO column amount ("BrO clouds") as estimated from satellite observations. The simulated "BrO clouds" are in modestly better agreement with the satellite measurements when the FY sea ice is assumed to be more efficient at releasing reactive bromine to the atmosphere than on the MY sea ice. Surface ozone data from coastal stations used in this study are not sufficient to evaluate unambiguously the difference between the FY sea ice and the MY sea ice as a source of bromine. The results strongly suggest that reactive bromine is released ubiquitously from the snow on the sea ice during the Arctic spring while the timing and location of the bromine release are largely controlled by meteorological factors. It appears that a rapid advection and an enhanced turbulent diffusion associated with strong boundary-layer winds drive transport and dispersion of ozone to the near-surface air over the sea ice, increasing the oxidation rate of bromide (Br−) in the surface snow. Also, if indeed the surface snowpack does supply most of the reactive bromine in the Arctic boundary layer, it appears to be capable of releasing reactive bromine at temperatures as high as −10 °C, particularly on the sea ice in the central and eastern Arctic Ocean. Dynamically-induced BrO column variability in the lowermost stratosphere appears to interfere with the use of satellite BrO column measurements for interpreting BrO variability in the lower troposphere but probably not to the extent of totally obscuring "BrO clouds" that originate from the surface snow/ice source of bromine in the high Arctic. A budget analysis of the simulated air-surface exchange of bromine compounds suggests that a "bromine explosion" occurs in the interstitial air of the snowpack and/or is accelerated by heterogeneous reactions on the surface of wind-blown snow in ambient air, both of which are not represented explicitly in our simple model but could have been approximated by a parameter adjustment for the yield of Br2 from the trigger.


2008 ◽  
Vol 8 (6) ◽  
pp. 1737-1750 ◽  
Author(s):  
A. E. Cavender ◽  
T. A. Biesenthal ◽  
J. W. Bottenheim ◽  
P. B. Shepson

Abstract. Volatile organic compound concentration ratios can be used as indicators of halogen chemistry that occurs during ozone depletion events in the Arctic during spring. Here we use a combination of modeling and measurements of [acetone]/[propanal] as an indicator of bromine chemistry, and [isobutane]/[n-butane] and [methyl ethyl ketone]/[n-butane] are used to study the extent of chlorine chemistry during four ozone depletion events during the Polar Sunrise Experiment of 1995. Using a 0-D photochemistry model in which the input of halogen atoms is controlled and varied, the approximate ratio of [Br]/[Cl] can be estimated for each ozone depletion event. It is concluded that there must be an additional source of propanal (likely from the snowpack) to correctly simulate the VOC chemistry of the Arctic, and further evidence that the ratio of Br atoms to Cl atoms can vary greatly during ozone depletion events is presented.


Sign in / Sign up

Export Citation Format

Share Document