scholarly journals Size-segregated aerosol mass closure and chemical composition in Monte Cimone (I) during MINATROC

2003 ◽  
Vol 3 (4) ◽  
pp. 4097-4127 ◽  
Author(s):  
J.-P. Putaud ◽  
R. Van Dingenen ◽  
A. Dell’Acqua ◽  
F. Raes ◽  
E. Matta ◽  
...  

Abstract. Physical and chemical characterizations of the atmospheric aerosol was carried out at Mt. Cimone (Italy) during the 4 June–4 July 2000 period. Particle size distributions in the size range 6 nm–10 μm were measured with a differential mobility analyzer (DMA) and a optical particle counter (OPC). Size-segregated aerosol was sampled using a 6-stage low pressure impactor. Aerosol samples were submitted to gravimetric and chemical analyses. Ionic, carbonaceous and refractory components of the aerosol were quantified. We compared the sub- and super-μm aerosol mass concentrations determined by gravimetric measurements (mGM), chemical analyses (mCA), and by converting particle size distribution to aerosol mass concentrations (mSC). Mean random uncertainties associated with the determination of mGM, mCA, and mSD were assessed. The three estimates of the sub-μm aerosol mass concentration agreed, which shows that within experimental uncertainty, the sub-μm aerosol was composed of the quantified components. The three estimates of the super-mm aerosol mass concentration did not agree, which indicates that random uncertainties and/or possible systematic errors in aerosol sampling, sizing or analyses were not adequately accounted for. Aerosol chemical composition in air masses from different origins showed differences, which were significant in regard to experimental uncertainties. During the Saharan dust advection period, coarse dust and fine anthropogenic particles were externally mixed. No anthropogenic sulfate could be found in the super-μm dust particles. In contrast, nitrate was shifted towards the aerosol super-μm fraction in presence of desert dust.

2004 ◽  
Vol 4 (4) ◽  
pp. 889-902 ◽  
Author(s):  
J.-P. Putaud ◽  
R. Van Dingenen ◽  
A. Dell'Acqua ◽  
F. Raes ◽  
E. Matta ◽  
...  

Abstract. Physical and chemical characterizations of the atmospheric aerosol were carried out at Mt. Cimone (Italy) during the 4 June-4 July 2000 period. Particle size distributions in the size range 6nm-10µm were measured with a differential mobility analyzer (DMA) and an optical particle counter (OPC). Size-segregated aerosol was sampled using a 6-stage low pressure impactor. Aerosol samples were submitted to gravimetric and chemical analyses. Ionic, carbonaceous and refractory components of the aerosol were quantified. We compared the sub- and superµm aerosol mass concentrations determined by gravimetric measurements (mGM), chemical analyses (mmCA), and by converting particle size distribution to aerosol mass concentrations (mmSD). Mean random uncertainties associated with the determination of mmGM, mmCA, and mmSD were assessed. The three estimates of the sub-µm aerosol mass concentration agreed, which shows that within experimental uncertainty, the sub-µm aerosol was composed of the quantified components. The three estimates of the super-µm aerosol mass concentration did not agree, which indicates that random uncertainties and/or possible systematic errors in aerosol sampling, sizing or analyses were not adequately accounted for. Aerosol chemical composition in air masses from different origins showed differences, which were significant in regard to experimental uncertainties. During the Saharan dust advection period, coarse dust and fine anthropogenic particles were externally mixed. No anthropogenic sulfate could be found in the super-µm dust particles. In contrast, nitrate was shifted towards the aerosol super-µm fraction in presence of desert dust.


2018 ◽  
Vol 11 (5) ◽  
pp. 2897-2910 ◽  
Author(s):  
Dimitra Mamali ◽  
Eleni Marinou ◽  
Jean Sciare ◽  
Michael Pikridas ◽  
Panagiotis Kokkalis ◽  
...  

Abstract. In situ measurements using unmanned aerial vehicles (UAVs) and remote sensing observations can independently provide dense vertically resolved measurements of atmospheric aerosols, information which is strongly required in climate models. In both cases, inverting the recorded signals to useful information requires assumptions and constraints, and this can make the comparison of the results difficult. Here we compare, for the first time, vertical profiles of the aerosol mass concentration derived from light detection and ranging (lidar) observations and in situ measurements using an optical particle counter on board a UAV during moderate and weak Saharan dust episodes. Agreement between the two measurement methods was within experimental uncertainty for the coarse mode (i.e. particles having radii >0.5 µm), where the properties of dust particles can be assumed with good accuracy. This result proves that the two techniques can be used interchangeably for determining the vertical profiles of aerosol concentrations, bringing them a step closer towards their systematic exploitation in climate models.


2020 ◽  
Author(s):  
Qing He ◽  
Quanwei Zhao

<p>A three-month experiment (June-August 2019) had been carried out on the undulating terrain of the Taklimakan Desert. The mass concentration characteristics of PM<sub>2.5</sub> and PM<sub>10</sub> at different locations of the sand ridge were obtained, studying the correlation between dust aerosol mass concentration and meteorological factors under different weather conditions. The results show that: (1) There are differences about the concentration of PM<sub>2.5</sub> and PM<sub>10</sub> in different locations of sand ridges under different typical weather conditions. The average mass concentration of PM<sub>2.5</sub> on sunny days meets: West Low Site > East Low Site > High Site, According to the dynamic  characteristic of PM<sub>10</sub>, peak-valley value of the three stations fluctuated sharply, and the daily average value of mass concentration shows: High Site > East Low Site > West Low Site. When the sand blowing and floating weather occurred, the variation of PM<sub>2.5</sub> mass concentration meet the following rule: East Low Site > High Site, PM<sub>10</sub> shows the opposite law. When the first sandstorm occurs, the PM<sub>2.5</sub> mass concentration satisfies the following Law: West Low Site 10 mass concentration change is generally expressed as: West Low Site 2.5 and PM<sub>10</sub> meets: West Low Site> High Site> East Low Site (2) Sunny Temperature、 Atmospheric Pressure, Relative Humidity of east low site, high site have a close correlation with PM<sub>2.5</sub>, PM<sub>10</sub><sub> </sub>Mass Concentrations, the wind speed of the west low site and the high site was significantly correlated with the PM<sub>2.5</sub> and PM<sub>10</sub> mass concentrations. When the dusty weather occurs, the wind speed has a significant effect on the mass concentration of dust aerosol in the high site, and there is a significant positive correlation between the atmospheric pressure and the aerosol mass concentration in the east low site or high site. During the sand-dust weather , the PM<sub>2.5</sub> and PM<sub>10</sub> mass concentrations were significantly negatively correlated with the atmospheric pressure in the high sand dunes, the correlation between wind speed and the PM<sub>2.5</sub> and PM<sub>10</sub> mass concentrations was greater than the East low Site. During the sandstorm, atmospheric pressure and temperature have a significant effect on the mass concentration of PM<sub>2.5</sub> and PM<sub>10.</sub></p>


2008 ◽  
Vol 8 (2) ◽  
pp. 407-423 ◽  
Author(s):  
J. Cozic ◽  
B. Verheggen ◽  
E. Weingartner ◽  
J. Crosier ◽  
K. N. Bower ◽  
...  

Abstract. The chemical composition of submicron (fine mode) and supermicron (coarse mode) aerosol particles has been investigated at the Jungfraujoch high alpine research station (3580 m a.s.l., Switzerland) as part of the GAW aerosol monitoring program since 1999. A clear seasonality was observed for all major components throughout the period with low concentrations in winter (predominantly free tropospheric aerosol) and higher concentrations in summer (enhanced vertical transport of boundary layer pollutants). In addition, mass closure was attempted during intensive campaigns in March 2004, February–March 2005 and August 2005. Ionic, carbonaceous and non-refractory components of the aerosol were quantified as well as the PM1 and coarse mode total aerosol mass concentrations. A relatively low conversion factor of 1.8 for organic carbon (OC) to particulate organic matter (OM) was found in winter (February–March 2005). Organics, sulfate, ammonium, and nitrate were the major components of the fine aerosol fraction that were identified, while calcium and nitrate were the only two measured components contributing to the coarse mode. The aerosol mass concentrations for fine and coarse mode aerosol measured during the intensive campaigns were not typical of the long-term seasonality due largely to dynamical differences. Average fine and coarse mode concentrations during the intensive field campaigns were 1.7 μg m−3 and 2.4 μg m−3 in winter and 2.5 μg m−3 and 2.0 μg m−3 in summer, respectively. The mass balance of aerosols showed higher contributions of calcium and nitrate in the coarse mode during Saharan dust events (SDE) than without SDE.


2018 ◽  
Author(s):  
Dimitra Mamali ◽  
Eleni Marinou ◽  
Jean Sciare ◽  
Michael Pikridas ◽  
Panagiotis Kokkalis ◽  
...  

Abstract. In-situ measurements using Unmanned Aerial Vehicles (UAVs) and remote sensing observations can independently provide dense vertically-resolved measurements of atmospheric aerosols; information which is highly required in climate models. In both cases, inverting the recorded signals to useful information requires assumptions and constraints, and this can make the comparison of the results difficult. Here we compare, for the first time, vertical profiles of the aerosol mass concentration derived from Light Detection And Ranging (lidar) observations and in-situ measurements using an Optical Particle Counter (OPC) onboard a UAV during moderate and weak Saharan dust episodes. Agreement between the two measurement methods was within experimental uncertainty for the coarse-mode (i.e., particles having radii > 0.5 μm) where the properties of dust particles can be assumed with good accuracy. This result proves that the two techniques can be used interchangeably for determining the vertical profiles of the aerosol concentrations, bringing them a step closer towards their systematic exploitation in climate models.


2007 ◽  
Vol 7 (4) ◽  
pp. 12145-12184 ◽  
Author(s):  
J. Cozic ◽  
B. Verheggen ◽  
E. Weingartner ◽  
J. Crosier ◽  
K. Bower ◽  
...  

Abstract. The chemical composition of submicron (fine mode) and supermicron (coarse mode) aerosol particles has been investigated since 1999 within the GAW aerosol monitoring program at the high alpine research station Jungfraujoch (3580 m a.s.l., Switzerland). Clear seasonality was observed for all major components in the last 9 years with low concentrations in winter (predominantly free tropospheric aerosol) and higher concentrations in summer (enhanced vertical transport of boundary layer pollutants). In addition, mass closure was attempted during intensive experiments in March 2004, February–March 2005 and August 2005. Ionic, carbonaceous and refractory components of the aerosol were quantified as well as the PM1 and coarse mode total aerosol mass concentrations. A relatively low conversion factor of 1.8 for organic carbon (OC) to particulate organic matter (OM) in winter (February–March 2005) was found. Organics, sulfate, ammonium, and nitrate were the major identified components of the fine aerosol fraction, while calcium and nitrate were the two major measured components in the coarse mode. The aerosol mass concentrations for fine and coarse mode aerosol during the intensive campaigns were not typical of the long term seasonality due largely to dynamical differences. Average fine and coarse mode concentrations during the intensive field campaigns were 1.7 μg m−3 and 2.4 μg m−3 in winter and 2.5 μg m−3 and 2.0 μg m−3 in summer, respectively. The mass balance of aerosols showed higher contributions of calcium and nitrate in the coarse mode during Saharan dust events (SDE) than without SDE.


2011 ◽  
Vol 11 (2) ◽  
pp. 723-740 ◽  
Author(s):  
G. Chen ◽  
L. D. Ziemba ◽  
D. A. Chu ◽  
K. L. Thornhill ◽  
G. L. Schuster ◽  
...  

Abstract. As part of the international project entitled "African Monsoon Multidisciplinary Analysis (AMMA)", NAMMA (NASA AMMA) aimed to gain a better understanding of the relationship between the African Easterly Waves (AEWs), the Sahara Air Layer (SAL), and tropical cyclogenesis. The NAMMA airborne field campaign was based out of the Cape Verde Islands during the peak of the hurricane season, i.e., August and September 2006. Multiple Sahara dust layers were sampled during 62 encounters in the eastern portion of the hurricane main development region, covering both the eastern North Atlantic Ocean and the western Saharan desert (i.e., 5–22° N and 10–35° W). The centers of these layers were located at altitudes between 1.5 and 3.3 km and the layer thickness ranged from 0.5 to 3 km. Detailed dust microphysical and optical properties were characterized using a suite of in-situ instruments aboard the NASA DC-8 that included a particle counter, an Ultra-High Sensitivity Aerosol Spectrometer, an Aerodynamic Particle Sizer, a nephelometer, and a Particle Soot Absorption Photometer. The NAAMA sampling inlet has a size cut (i.e., 50% transmission efficiency size) of approximately 4 μm in diameter for dust particles, which limits the representativeness of the NAMMA observational findings. The NAMMA dust observations showed relatively low particle number densities, ranging from 268 to 461 cm−3, but highly elevated volume density with an average at 45 μm3 cm−3. NAMMA dust particle size distributions can be well represented by tri-modal lognormal regressions. The estimated volume median diameter (VMD) is averaged at 2.1 μm with a small range of variation regardless of the vertical and geographical sampling locations. The Ångström Exponent assessments exhibited strong wavelength dependence for absorption but a weak one for scattering. The single scattering albedo was estimated at 0.97 ± 0.02. The imaginary part of the refractive index for Sahara dust was estimated at 0.0022, with a range from 0.0015 to 0.0044. Closure analysis showed that observed scattering coefficients are highly correlated with those calculated from spherical Mie-Theory and observed dust particle size distributions. These values are generally consistent with literature values reported from studies with similar particle sampling size range.


2017 ◽  
Vol 114 ◽  
pp. 42-54 ◽  
Author(s):  
U. Soysal ◽  
E. Géhin ◽  
E. Algré ◽  
B. Berthelot ◽  
G. Da ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document