scholarly journals Conceptual study on nucleation burst evolution in the convective boundary layer – Part II: Meteorological characterization

2005 ◽  
Vol 5 (6) ◽  
pp. 11489-11515
Author(s):  
O. Hellmuth

Abstract. While in part I of the present paper a revised columnar high-order modelling approach to investigate gas-aerosol interactions in the convective boundary layer (CBL) was deduced, in the present part the model capability to predict the evolution of meteorological CBL parameters is demonstrated. Based on a model setup to simulate typical CBL conditions, predicted first-, second- and third-order moments were shown to agree very well with those obtained from in situ and remote sensing turbulence measurements such as aircraft, SODAR and LIDAR measurements as well as with those derived from ensemble-averaged large-eddy simulations and wind tunnel experiments. The results show that the model is able to predict the meteorological CBL parameters, required to verify or falsify, respectively, previous hypothesis on the interaction between CBL turbulence and new particle formation.

2006 ◽  
Vol 6 (12) ◽  
pp. 4215-4230 ◽  
Author(s):  
O. Hellmuth

Abstract. While in Paper I of four papers a revised columnar high-order modelling approach to investigate gas-aerosol-turbulence interactions in the convective boundary layer (CBL) was deduced, in the present Paper II the model capability to predict the evolution of meteorological CBL parameters is demonstrated. Based on a model setup to simulate typical CBL conditions, predicted first-, second- and third-order moments were shown to agree very well with those obtained from in situ and remote sensing turbulence measurements such as aircraft, SODAR and LIDAR measurements as well as with those derived from ensemble-averaged large eddy simulations and wind tunnel experiments. The results show, that the model is able to predict the meteorological CBL parameters, required to verify or falsify, respectively, previous hypothesis on the interaction between CBL turbulence and new particle formation.


2005 ◽  
Vol 5 (6) ◽  
pp. 11413-11487 ◽  
Author(s):  
O. Hellmuth

Abstract. A high-order modelling approach to interprete 'continental-type' particle formation bursts in the anthropogenically influenced convective boundary layer (CBL) is proposed. The model considers third-order closure for planetary boundary layer turbulence, sulfur and ammonia chemistry and aerosol dynamics. In part I of the present paper, previous observations of ultrafine particle evolution are reviewed, model equations are derived, the model setup for a conceptual study on binary and ternary homogeneous nucleation is defined, and shortcomings of process parameterization are discussed. In subsequent parts of the paper simulation results obtained within the framework of a conceptual study on the CBL evolution and new particle formation (NPF) will be presented and compared with observational findings.


2012 ◽  
Vol 8 (1) ◽  
pp. 83-86 ◽  
Author(s):  
J. G. Pedersen ◽  
M. Kelly ◽  
S.-E. Gryning ◽  
R. Floors ◽  
E. Batchvarova ◽  
...  

Abstract. Vertical profiles of the horizontal wind speed and of the standard deviation of vertical wind speed from Large Eddy Simulations of a convective atmospheric boundary layer are compared to wind LIDAR measurements up to 1400 m. Fair agreement regarding both types of profiles is observed only when the simulated flow is driven by a both time- and height-dependent geostrophic wind and a time-dependent surface heat flux. This underlines the importance of mesoscale effects when the flow above the atmospheric surface layer is simulated with a computational fluid dynamics model.


2020 ◽  
Vol 244 ◽  
pp. 105035 ◽  
Author(s):  
S.V. Anisimov ◽  
S.V. Galichenko ◽  
A.A. Prokhorchuk ◽  
K.V. Aphinogenov

Sign in / Sign up

Export Citation Format

Share Document