Review of "Quantification and parameterization of non-linearity effects by higher order sensitivity terms in scattered light Differential Optical Absorption Spectroscopy"

2016 ◽  
Author(s):  
Anonymous
2021 ◽  
Vol 13 (11) ◽  
pp. 2098
Author(s):  
Yuanyuan Qian ◽  
Yuhan Luo ◽  
Fuqi Si ◽  
Haijin Zhou ◽  
Taiping Yang ◽  
...  

Global measurements of total ozone are necessary to evaluate ozone hole recovery above Antarctica. The Environmental Trace Gases Monitoring Instrument (EMI) onboard GaoFen 5, launched in May 2018, was developed to measure and monitor the global total ozone column (TOC) and distributions of other trace gases. In this study, some of the first global TOC results of the EMI using the differential optical absorption spectroscopy (DOAS) method and validation with ground-based TOC measurements and data derived from Ozone Monitoring Instrument (OMI) and TROPOspheric Monitoring Instrument (TROPOMI) observations are presented. Results show that monthly average EMI TOC data had a similar spatial distribution and a high correlation coefficient (R ≥ 0.99) with both OMI and TROPOMI TOC. Comparisons with ground-based measurements from the World Ozone and Ultraviolet Radiation Data Centre also revealed strong correlations (R > 0.9). Continuous zenith sky measurements from zenith scattered light differential optical absorption spectroscopy instruments in Antarctica were also used for validation (R = 0.9). The EMI-derived observations were able to account for the rapid change in TOC associated with the sudden stratospheric warming event in October 2019; monthly average TOC in October 2019 was 45% higher compared to October 2018. These results indicate that EMI TOC derived using the DOAS method is reliable and has the potential to be used for global TOC monitoring.


2016 ◽  
Author(s):  
Jānis Puķīte ◽  
Thomas Wagner

Abstract. We address the application of Differential Optical Absorption Spectroscopy (DOAS) of scattered light observations in the presence of strong absorbers (in particular ozone), for which the absorption optical depth is a non-linear function of the trace gas concentration. This is the case, because Beer-Lambert law generally does not hold for scattered light measurements due to many light paths contributing to the measurement. While in many cases linear approximation can be made, for scenarios with strong absorptions non-linear effects cannot always be neglected. This is especially the case for observation geometries, for which the light contributing to the measurement is crossing the atmosphere under spatially well separated paths differing strongly in length and location, like e.g. in limb geometry. In these cases, often full retrieval algorithms are applied to address the non-linearities requiring iterative forward modelling of absorption spectra involving time consuming wavelength by wavelength radiative transfer modelling. In this study, we propose to describe the non-linear effects by additional sensitivity parameters that can be used e.g. to build up a look up table. Together with widely used box air mass factors (effective light paths) describing the linear response to the increase in the trace gas amount, the higher order sensitivity parameters eliminate the need for repeating the radiative transfer modelling when modifying the absorption scenario even in presence of a strong absorption background. While the higher order absorption structures can be described as separate fit parameters in the spectral analysis (so called DOAS fit), in practice their quantitative evaluation requires good measurement quality (typically better than that available from current measurements). Therefore, we introduce an iterative retrieval algorithm correcting for the higher or- der absorption structures not yet considered in the DOAS fit as well as the absorption dependence on temperature and scattering processes.


2016 ◽  
Vol 9 (5) ◽  
pp. 2147-2177 ◽  
Author(s):  
Jānis Puķīte ◽  
Thomas Wagner

Abstract. We address the application of differential optical absorption spectroscopy (DOAS) of scattered light observations in the presence of strong absorbers (in particular ozone), for which the absorption optical depth is a non-linear function of the trace gas concentration. This is the case because Beer–Lambert law generally does not hold for scattered light measurements due to many light paths contributing to the measurement. While in many cases linear approximation can be made, for scenarios with strong absorptions non-linear effects cannot always be neglected. This is especially the case for observation geometries, for which the light contributing to the measurement is crossing the atmosphere under spatially well-separated paths differing strongly in length and location, like in limb geometry. In these cases, often full retrieval algorithms are applied to address the non-linearities, requiring iterative forward modelling of absorption spectra involving time-consuming wavelength-by-wavelength radiative transfer modelling. In this study, we propose to describe the non-linear effects by additional sensitivity parameters that can be used e.g. to build up a lookup table. Together with widely used box air mass factors (effective light paths) describing the linear response to the increase in the trace gas amount, the higher-order sensitivity parameters eliminate the need for repeating the radiative transfer modelling when modifying the absorption scenario even in the presence of a strong absorption background. While the higher-order absorption structures can be described as separate fit parameters in the spectral analysis (so-called DOAS fit), in practice their quantitative evaluation requires good measurement quality (typically better than that available from current measurements). Therefore, we introduce an iterative retrieval algorithm correcting for the higher-order absorption structures not yet considered in the DOAS fit as well as the absorption dependence on temperature and scattering processes.


2007 ◽  
Vol 7 (1) ◽  
pp. 69-79 ◽  
Author(s):  
T. Wagner ◽  
S. Beirle ◽  
T. Deutschmann ◽  
M. Grzegorski ◽  
U. Platt

Abstract. A new method for the satellite remote sensing of different types of vegetation and ocean colour is presented. In contrast to existing algorithms relying on the strong change of the reflectivity in the red and near infrared spectral region, our method analyses weak narrow-band (few nm) reflectance structures (i.e. "fingerprint" structures) of vegetation in the red spectral range. It is based on differential optical absorption spectroscopy (DOAS), which is usually applied for the analysis of atmospheric trace gas absorptions. Since the spectra of atmospheric absorption and vegetation reflectance are simultaneously included in the analysis, the effects of atmospheric absorptions are automatically corrected (in contrast to other algorithms). The inclusion of the vegetation spectra also significantly improves the results of the trace gas retrieval. The global maps of the results illustrate the seasonal cycles of different vegetation types. In addition to the vegetation distribution on land, they also show patterns of biological activity in the oceans. Our results indicate that improved sets of vegetation spectra might lead to more accurate and more specific identification of vegetation type in the future.


Sign in / Sign up

Export Citation Format

Share Document