scholarly journals Investigation of a potential HCHO measurement artifact from ISOPOOH

Author(s):  
Jason M. St. Clair ◽  
Jean C. Rivera-Rios ◽  
John D. Crounse ◽  
Eric Praske ◽  
Michelle J. Kim ◽  
...  

Abstract. Recent laboratory experiments have shown that a first generation isoprene oxidation product, ISOPOOH, can decompose to methyl vinyl ketone (MVK) and methacrolein (MACR) on instrument surfaces, leading to overestimates of MVK and MACR concentrations. Formaldehyde (HCHO) was suggested as a decomposition co-product, raising concern that in situ HCHO measurements may also be affected by an ISOPOOH interference. The HCHO measurement artifact from ISOPOOH for the NASA In Situ Airborne Formaldehyde instrument (ISAF) was investigated for the two major ISOPOOH isomers, (1,2)-ISOPOOH and (4,3)-ISOPOOH, under dry and humid conditions. The dry conversion of ISOPOOH to HCHO was 3 ± 2 % and 6 ± 4 % for (1,2)-ISOPOOH and (4,3)-ISOPOOH, respectively. Under humid (RH = 40–60 %) conditions, conversion to HCHO was 6 ± 4 % for (1,2)-ISOPOOH and 10 ± 5 % for (4,3)-ISOPOOH. The measurement artifact caused by conversion of ISOPOOH to HCHO in the ISAF instrument was estimated for data obtained on the 2013 September 6 flight of the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) campaign. Prompt ISOPOOH conversion to HCHO was the source for

2016 ◽  
Vol 9 (9) ◽  
pp. 4561-4568 ◽  
Author(s):  
Jason M. St. Clair ◽  
Jean C. Rivera-Rios ◽  
John D. Crounse ◽  
Eric Praske ◽  
Michelle J. Kim ◽  
...  

Abstract. Recent laboratory experiments have shown that a first generation isoprene oxidation product, ISOPOOH, can decompose to methyl vinyl ketone (MVK) and methacrolein (MACR) on instrument surfaces, leading to overestimates of MVK and MACR concentrations. Formaldehyde (HCHO) was suggested as a decomposition co-product, raising concern that in situ HCHO measurements may also be affected by an ISOPOOH interference. The HCHO measurement artifact from ISOPOOH for the NASA In Situ Airborne Formaldehyde instrument (ISAF) was investigated for the two major ISOPOOH isomers, (1,2)-ISOPOOH and (4,3)-ISOPOOH, under dry and humid conditions. The dry conversion of ISOPOOH to HCHO was 3 ± 2 % and 6 ± 4 % for (1,2)-ISOPOOH and (4,3)-ISOPOOH, respectively. Under humid (relative humidity of 40–60 %) conditions, conversion to HCHO was 6 ± 4 % for (1,2)-ISOPOOH and 10 ± 5 % for (4,3)-ISOPOOH. The measurement artifact caused by conversion of ISOPOOH to HCHO in the ISAF instrument was estimated for data obtained on the 6 September 2013 flight of the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) campaign. Prompt ISOPOOH conversion to HCHO was the source of < 4 % of the observed HCHO, including in the high-isoprene boundary layer. Time-delayed conversion, where previous exposure to ISOPOOH affects measured HCHO later in the flight, was conservatively estimated to be < 10 % of observed HCHO, and is significant only when high ISOPOOH sampling periods immediately precede periods of low HCHO.


2011 ◽  
Vol 11 (21) ◽  
pp. 10779-10790 ◽  
Author(s):  
M. M. Galloway ◽  
A. J. Huisman ◽  
L. D. Yee ◽  
A. W. H. Chan ◽  
C. L. Loza ◽  
...  

Abstract. We present first-generation and total production yields of glyoxal, methylglyoxal, glycolaldehyde, and hydroxyacetone from the oxidation of isoprene, methyl vinyl ketone (MVK), and methacrolein (MACR) with OH under high NOx conditions. Several of these first-generation yields are not included in commonly used chemical mechanisms, such as the Leeds Master Chemical Mechanism (MCM) v. 3.2. The first-generation yield of glyoxal from isoprene was determined to be 2.1 (±0.6)%. Inclusion of first-generation production of glyoxal, glycolaldehyde and hydroxyacetone from isoprene greatly improves performance of an MCM based model during the initial part of the experiments. In order to further improve performance of the MCM based model, higher generation glyoxal production was reduced by lowering the first-generation yield of glyoxal from C5 hydroxycarbonyls. The results suggest that glyoxal production from reaction of OH with isoprene under high NOx conditions can be approximated by inclusion of a first-generation production term together with secondary production only via glycolaldehyde. Analogously, methylglyoxal production can be approximated by a first-generation production term from isoprene, and secondary production via MVK, MACR and hydroxyacetone. The first-generation yields reported here correspond to less than 5% of the total oxidized yield from isoprene and thus only have a small effect on the fate of isoprene. However, due to the abundance of isoprene, the combination of first-generation yields and reduced higher generation production of glyoxal from C5 hydroxycarbonyls is important for models that include the production of the small organic molecules from isoprene.


2013 ◽  
Vol 13 (11) ◽  
pp. 5715-5730 ◽  
Author(s):  
Y. J. Liu ◽  
I. Herdlinger-Blatt ◽  
K. A. McKinney ◽  
S. T. Martin

Abstract. The photo-oxidation chemistry of isoprene (ISOP; C5H8) was studied in a continuous-flow chamber under conditions such that the reactions of the isoprene-derived peroxyl radicals (RO2) were dominated by the hydroperoxyl (HO2) pathway. A proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF-MS) with switchable H3O+ and NO+ reagent ions was used for product analysis. The products methyl vinyl ketone (MVK; C4H6O) and methacrolein (MACR; C4H6O) were differentiated using NO+ reagent ions. The MVK and MACR yields via the HO2 pathway were (3.8 ± 1.3)% and (2.5 ± 0.9)%, respectively, at +25 °C and < 2% relative humidity. The respective yields were (41.4 ± 5.5)% and (29.6 ± 4.2)% via the NO pathway. Production of MVK and MACR via the HO2 pathway implies concomitant production of hydroxyl ((6.3 ± 2.1)%) and hydroperoxyl ((6.3 ± 2.1)%) radicals, meaning a HOx recycling of (12.6 ± 4.2)% given that HO2 was both a reactant and product. Other isoprene oxidation products, believed to be mostly organic hydroperoxides, also contributed to the ion intensity at the same mass-to-charge (m/z) ratios as the MVK and MACR product ions for HO2-dominant conditions. These products were selectively removed from the gas phase by placement of a cold trap (−40 °C) inline prior to the PTR-TOF-MS. When incorporated into regional and global chemical transport models, the yields of MVK and MACR and the concomitant HOx recycling reported in this study can improve the accuracy of the simulation of the HO2 reaction pathway of isoprene, which is believed to be the fate of approximately half of atmospherically produced isoprene-derived peroxy radicals on a global scale.


2011 ◽  
Vol 11 (4) ◽  
pp. 10693-10720 ◽  
Author(s):  
M. M. Galloway ◽  
A. J. Huisman ◽  
L. D. Yee ◽  
A. W. H. Chan ◽  
C. L. Loza ◽  
...  

Abstract. We present first-generation and total production yields of glyoxal, methylglyoxal, glycolaldehyde, and hydroxyacetone from the oxidation of isoprene, methyl vinyl ketone (MVK), and methacrolein (MACR) with OH under high NOx conditions. Several of these first-generation yields are not included in commonly used chemical mechanisms, such as the Leeds Master Chemical Mechanism (MCM) v. 3.1. Inclusion of first-generation production of glyoxal, glycolaldehyde and hydroxyacetone from isoprene and methylglyoxal from MACR greatly improves performance of an MCM based model during the initial part of the experiments. In order to further improve performance of the MCM based model, higher generation glyoxal production was reduced by lowering the first-generation yield of glyoxal from C5 carbonyls. The results suggest that glyoxal production from reaction of OH with isoprene under high NOx conditions can be approximated by inclusion of a first-generation production term together with secondary production only via glycolaldehyde. Analogously, methylglyoxal production can be approximated by a first-generation production term from isoprene, and secondary production via MVK, MACR and hydroxyacetone. The first-generation yields reported here correspond to less than 5% of the total oxidized yield from isoprene and thus only have a small effect on the fate of isoprene. However, due to the abundance of isoprene, the combination of first-generation yields and reduced higher generation production of glyoxal from C5 carbonyls is important for models which include the production of the small organic molecules from isoprene.


2010 ◽  
Vol 10 (19) ◽  
pp. 9551-9561 ◽  
Author(s):  
X. Zhang ◽  
Z. M. Chen ◽  
Y. Zhao

Abstract. Increasing evidence suggests that secondary organic aerosol (SOA) is formed through aqueous phase reactions in atmospheric clouds. In the present study, the aqueous oxidation of methyl vinyl ketone (MVK) and methacrolein (MACR) via OH radical were investigated, with an emphasis on the composition and variation of small-molecular-weight organic products. In addition, high-molecular-weight compounds (HMWs) were found, interpreted as the ion abundance and time evolution. Our results provide, for the first time to our knowledge, experimental evidence that aqueous OH-oxidation of MVK contributes to SOA formation. Further, a mechanism primarily involving radical processes was proposed to gain a basic understanding of these two reactions. Based on the assumed mechanism, a kinetic model was developed for comparison with the experimental results. The model reproduced the observed profiles of first-generation intermediates, but failed to simulate the kinetics of most organic acids mainly due to the lack of chemical kinetics parameters for HMWs. A sensitivity analysis was performed in terms of the effect of stoichiometric coefficients for precursors on oxalic acid yields and the result indicates that additional pathways involving HMWs chemistry might play an important role in the formation of oxalic acid. We suggest that further study is needed for better understanding the behavior of multi-functional products and their contribution to the oxalic acid formation.


Author(s):  
Carlos Cabezas ◽  
Marcos Juanes ◽  
Rizalina T. Saragi ◽  
Alberto Lesarri ◽  
Isabel Peña

2011 ◽  
Vol 18 (3) ◽  
pp. 973-984 ◽  
Author(s):  
Kolby J. Jardine ◽  
Russell K. Monson ◽  
Leif Abrell ◽  
Scott R. Saleska ◽  
Almut Arneth ◽  
...  

2015 ◽  
Vol 15 (16) ◽  
pp. 9109-9127 ◽  
Author(s):  
B. Ervens ◽  
P. Renard ◽  
S. Tlili ◽  
S. Ravier ◽  
J.-L. Clément ◽  
...  

Abstract. Laboratory experiments of efficient oligomerization from methyl vinyl ketone (MVK) in the bulk aqueous phase were simulated in a box model. Kinetic data are applied (if known) or fitted to the observed MVK decay and oligomer mass increase. Upon model sensitivity studies, in which unconstrained rate constants were varied over several orders of magnitude, a set of reaction parameters was found that could reproduce laboratory data over a wide range of experimental conditions. This mechanism is the first that comprehensively describes such radical-initiated oligomer formation. This mechanism was implemented into a multiphase box model that simulates secondary organic aerosol (SOA) formation from isoprene, as a precursor of MVK and methacrolein (MACR) in the aqueous and gas phases. While in laboratory experiments oxygen limitation might occur and lead to accelerated oligomer formation, such conditions are likely not met in the atmosphere. The comparison of predicted oligomer formation shows that MVK and MACR likely do negligibly contribute to total SOA as their solubilities are low and even reduced in aerosol water due to ionic strength effects (Setchenov coefficients). Significant contribution by oligomers to total SOA might only occur if a substantial fraction of particulate carbon acts as oligomer precursors and/or if oxygen solubility in aerosol water is strongly reduced due to salting-out effects.


Sign in / Sign up

Export Citation Format

Share Document