isoprene oxidation products
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 5)

H-INDEX

13
(FIVE YEARS 1)

2021 ◽  
Vol 14 (10) ◽  
pp. 6309-6329
Author(s):  
Dandan Wei ◽  
Hariprasad D. Alwe ◽  
Dylan B. Millet ◽  
Brandon Bottorff ◽  
Michelle Lew ◽  
...  

Abstract. The FORCAsT (FORest Canopy Atmosphere Transfer) model version 1.0 is updated to FORCAsT 2.0 by implementing five major changes, including (1) a change to the operator splitting, separating chemistry from emission and dry deposition, which reduces the run time of the gas-phase chemistry by 70 % and produces a more realistic in-canopy profile for isoprene; (2) a modification of the eddy diffusivity parameterization to produce greater and more realistic vertical mixing in the boundary layer, which ameliorates the unrealistic simulated end-of-day peaks in isoprene under well-mixed conditions and improves daytime air temperature; (3) updates to dry deposition velocities with available measurements; (4) implementation of the Reduced Caltech Isoprene Mechanism (RCIM) to reflect the current knowledge of isoprene oxidation; and (5) extension of the aerosol module to include isoprene-derived secondary organic aerosol (iSOA) formation. Along with the operator splitting, modified vertical mixing, and dry deposition, RCIM improves the estimation of first-generation isoprene oxidation products (methyl vinyl ketone and methacrolein) and some second-generation products (such as isoprene epoxydiols). Inclusion of isoprene in the aerosol module in FORCAsT 2.0 leads to a 7 % mass yield of iSOA. The most important iSOA precursors are IEPOX and tetrafunctionals, which together account for >86 % of total iSOA. The iSOA formed from organic nitrates is more important in the canopy, accounting for 11 % of the total iSOA. The tetrafunctionals compose up to 23 % of the total iSOA formation, highlighting the importance of the fate (i.e., dry deposition and gas-phase chemistry) of later-generation isoprene oxidation products in estimating iSOA formation.


2021 ◽  
Vol 21 (15) ◽  
pp. 12141-12153
Author(s):  
Chao Qin ◽  
Yafeng Gou ◽  
Yuhang Wang ◽  
Yuhao Mao ◽  
Hong Liao ◽  
...  

Abstract. Gas–particle partitioning of water-soluble organic compounds plays a significant role in influencing the formation, transport, and lifetime of organic aerosols in the atmosphere, but is poorly characterized. In this work, gas- and particle-phase concentrations of isoprene oxidation products (C5-alkene triols and 2-methylterols), levoglucosan, and sugar polyols were measured simultaneously at a suburban site of the western Yangtze River Delta in east China. All target polyols were primarily distributed into the particle phase (85.9 %–99.8 %). Given the uncertainties in measurements and vapor pressure predictions, a dependence of particle-phase fractions on vapor pressures cannot be determined. To explore the impact of aerosol liquid water on gas–particle partitioning of polyol tracers, three partitioning schemes (Cases 1–3) were proposed based on equilibriums of gas vs. organic and aqueous phases in aerosols. If particulate organic matter (OM) is presumed as the only absorbing phase (Case 1), the measurement-based absorptive partitioning coefficients (Kp,OMm) of isoprene oxidation products and levoglucosan were more than 10 times greater than predicted values (Kp,OMt). The agreement between Kp,OMm and Kp,OMt was substantially improved when solubility in a separate aqueous phase was included, whenever water-soluble and water-insoluble OM partitioned into separate (Case 2) or single (Case 3) liquid phases, suggesting that the partitioning of polyol tracers into the aqueous phase in aerosols should not be ignored. The measurement-based effective Henry's law coefficients (KH,em) of polyol tracers were orders of magnitude higher than their predicted values in pure water (KH,wt). Due to the moderate correlations between log⁡(KH,em/KH,wt) and molality of sulfate ions, the gap between KH,em and KH,wt of polyol tracers could not be fully parameterized by the equation defining “salting-in” effects and might be ascribed to mechanisms of reactive uptake, aqueous phase reaction, “like-dissolves-like” principle, etc. These study results also partly reveal the discrepancy between observation and modeling of organic aerosols.


2021 ◽  
Author(s):  
Dandan Wei ◽  
Hariprasad D. Alwe ◽  
Dylan B. Millet ◽  
Brandon Bottorff ◽  
Michelle Lew ◽  
...  

Abstract. The FORCAsT (FORest Canopy Atmosphere Transfer) model version 1.0 is updated to FORCAsT 2.0 by implementing five major changes, including (1) a change to the operator splitting, separating chemistry from emission and dry deposition, which reduces the run time of the gas-phase chemistry by 70 % and produces a more realistic in-canopy profile for isoprene; (2) a modification of the eddy diffusivity parameterization to produce greater and more realistic vertical mixing in the boundary layer, which ameliorates the unrealistic simulated end-of-day peaks in isoprene under well-mixed conditions and improves daytime air temperature; (3) updates to dry deposition velocities with available measurements; (4) implementation of the Reduced Caltech isoprene mechanism (RCIM) to reflect the current knowledge of isoprene oxidation; and (5) extension of the aerosol module to include isoprene-derived aerosol (iSOA) formation. Along with the operator splitting, modified vertical mixing and dry deposition, RCIM improves the estimation of first generation isoprene oxidation products (methyl vinyl ketone and methacrolein) and some second generation products (such as isoprene epoxydiols). Inclusion of isoprene in the aerosol module in FORCAsT 2.0 leads to a 7 % mass yield of iSOA. The most important iSOA precursors are IEPOX and tetrafunctionals, which together account for > 86 % of total iSOA. The iSOA formed from organic nitrates are more important in the canopy, accounting for 11 % of the total iSOA. The tetrafunctionals compose up to 23 % of the total iSOA formation, highlighting the importance of the fate (i.e. dry deposition and gas-phase chemistry) of later-generation isoprene oxidation products in estimating iSOA formation.


2021 ◽  
Author(s):  
Chao Qin ◽  
Yafeng Gou ◽  
Yuhang Wang ◽  
Yuhao Mao ◽  
Hong Liao ◽  
...  

Abstract. Gas-particle partitioning of water-soluble organic compounds plays a significant role in the formation and source apportionment of organic aerosols, but is poorly characterized. In this work, gas- and particle-phase concentrations of isoprene oxidation products (C5-alkene triols and 2-methylterols), levoglucosan, and sugar polyols were measured simultaneously at a suburban site of the western Yangtze River Delta in east China. All target polyols were primarily distributed into the particle phase (85.9–99.8 %), and their average particle-phase fractions were not strictly dependent on vapor pressures. Moreover, the measurement-based partitioning coefficients (Kp,OM) of isoprene oxidation products and levoglucosan were 102 to 104 times larger than their predicted Kp,OM based on the equilibrium absorptive partitioning model. These are likely attributed to the hygroscopic properties of polyol tracers and high aerosol liquid water (ALW) concentrations (~20 µg m−3) of the study location. Due to the large gaps (up to 107) between measurement-based effective Henry's law coefficients (KH,e) and predicted values in pure water (KH,w), the gas-particle partitioning of polyol tracers could not be depicted using Henry's law alone either. The regressions of log (KH,w/KH,e) versus molality of major water-soluble components in ALW indicated that sulfate ions (salting-in effect) and water-soluble organic carbon can promote the partitioning of polyol tracers into the aqueous phase. These results suggest a partitioning mechanism of enhanced aqueous-phase uptake for polyol tracers, which partly reveals the discrepancy between observation and modeling of secondary organic aerosols.


2020 ◽  
Vol 76 (1) ◽  
pp. 36-43 ◽  
Author(s):  
Tomoki MOCHIZUKI ◽  
Satoru TAKANASHI ◽  
Ryuichi WADA ◽  
Yuzo MIYAZAKI ◽  
Takashi NAKANO ◽  
...  

2017 ◽  
Author(s):  
Dongyu S. Wang ◽  
Lea Hildebrandt Ruiz

Abstract. Recent studies have found inland concentrations of reactive chlorine species to be higher than expected, suggesting that atmospheric chlorine chemistry is more extensive than previously thought. Chlorine radicals can interact with HOx radicals and nitrogen oxides (NOx) to alter the oxidative capacity of the atmosphere. They are known to rapidly oxidize a wide range of volatile organic compounds (VOC) found in the atmosphere, yet little is known about secondary organic aerosol (SOA) formation from chlorine-initiated photo-oxidation and its atmospheric implications. Environmental chamber experiments were carried out under low-NOx conditions with isoprene and chlorine as primary VOC and oxidant sources. Upon complete isoprene consumption, observed SOA yields ranged from 8 % to 36 %, decreasing with extended photo-oxidation and SOA aging. A High-Resolution Time-of-Flight Chemical Ionization Mass Spectrometer was used to determine the molecular composition of gas-phase species using iodide-water and hydronium-water ionization. Ions consistent with isoprene-derived epoxydiol (IEPOX) and other common OH-isoprene oxidation products were observed, evident of secondary OH production and resulting chemistry from Cl-initiated reactions.


2013 ◽  
Vol 13 (18) ◽  
pp. 9497-9514 ◽  
Author(s):  
P. M. Edwards ◽  
M. J. Evans ◽  
K. L. Furneaux ◽  
J. Hopkins ◽  
T. Ingham ◽  
...  

Abstract. OH (hydroxyl radical) reactivity, the inverse of the chemical lifetime of the hydroxyl radical, was measured for 12 days in April 2008 within a tropical rainforest on Borneo as part of the OP3 (Oxidant and Particle Photochemical Processes) project. The maximum observed value was 83.8 ± 26.0 s−1 with the campaign averaged noontime maximum being 29.1 ± 8.5 s−1. The maximum OH reactivity calculated using the diurnally averaged concentrations of observed sinks was ~ 18 s−1, significantly less than the observations, consistent with other studies in similar environments. OH reactivity was dominated by reaction with isoprene (~ 30%). Numerical simulations of isoprene oxidation using the Master Chemical Mechanism (v3.2) in a highly simplified physical and chemical environment show that the steady state OH reactivity is a linear function of the OH reactivity due to isoprene alone, with a maximum multiplier, to account for the OH reactivity of the isoprene oxidation products, being equal to the number of isoprene OH attackable bonds (10). Thus the emission of isoprene constitutes a significantly larger emission of reactivity than is offered by the primary reaction with isoprene alone, with significant scope for the secondary oxidation products of isoprene to constitute the observed missing OH reactivity. A physically and chemically more sophisticated simulation (including physical loss, photolysis, and other oxidants) showed that the calculated OH reactivity is reduced by the removal of the OH attackable bonds by other oxidants and photolysis, and by physical loss (mixing and deposition). The calculated OH reactivity is increased by peroxide cycling, and by the OH concentration itself. Notable in these calculations is that the accumulated OH reactivity from isoprene, defined as the total OH reactivity of an emitted isoprene molecule and all of its oxidation products, is significantly larger than the reactivity due to isoprene itself and critically depends on the chemical and physical lifetimes of intermediate species. When constrained to the observed diurnally averaged concentrations of primary VOCs (volatile organic compounds), O3, NOx and other parameters, the model underestimated the observed diurnal mean OH reactivity by 30%. However, it was found that (1) the short lifetimes of isoprene and OH, compared to those of the isoprene oxidation products, lead to a large variability in their concentrations and so significant variation in the calculated OH reactivity; (2) uncertainties in the OH chemistry in these high isoprene environments can lead to an underestimate of the OH reactivity; (3) the physical loss of species that react with OH plays a significant role in the calculated OH reactivity; and (4) a missing primary source of reactive carbon would have to be emitted at a rate equivalent to 50% that of isoprene to account for the missing OH sink. Although the presence of unmeasured primary emitted VOCs contributing to the measured OH reactivity is likely, evidence that these primary species account for a significant fraction of the unmeasured reactivity is not found. Thus the development of techniques for the measurement of secondary multifunctional carbon compounds is needed to close the OH reactivity budget.


Sign in / Sign up

Export Citation Format

Share Document