scholarly journals Supplementary material to "On-line differentiation of mineral phase in aerosol particles by ion formation mechanism using a LAAP-ToF single particle mass spectrometer"

Author(s):  
Nicholas A. Marsden ◽  
Michael J. Flynn ◽  
James D. Allan ◽  
Hugh Coe
2018 ◽  
Author(s):  
Xiaoli Shen ◽  
Harald Saathoff ◽  
Wei Huang ◽  
Claudia Mohr ◽  
Ramakrishna Ramisetty ◽  
...  

Abstract. Single particle mass spectrometry (SPMS) is a useful, albeit not fully quantitative tool to determine chemical composition and mixing state of aerosol particles in the atmosphere. During a six-week field campaign in summer 2016 at a rural site in the upper Rhine valley near Karlsruhe city in southwest Germany, ~3.7 x 105 single particles were analyzed by a laser ablation aerosol particle time-of-flight mass spectrometer (LAAPTOF). Combining fuzzy classification, marker peaks, typical peak ratios, and laboratory-based reference spectra, seven major particle classes were identified. With the precise identification and well characterized overall detection efficiency (ODE) for this instrument, particle similarity can be transferred into corrected number fractions and further transferred into mass fractions. Considering the entire measurement period, Potassium rich and aromatics coated dust (class 5) dominated the particle number (46.5 % number fraction) and mass (36.0 % mass fraction); Sodium salts like particles (class 3) were the second lowest in number (3.5 %), but the second dominating class in terms of particle mass (25.3 %). This difference demonstrates the crucial role of particle mass quantification for SPMS data. Using corrections for maximum, mean, and minimum ODE, the total mass of the quantified particles measured by LAAPTOF accounts for ~12 %, ~25 %, and ~104 % of the total mass measured by an aerosol mass spectrometer (AMS) with a collection efficiency of 0.5. These two mass spectrometers show a good correlation (correlation coefficient γ > 0.6) regarding total mass for more than 70 % of the measurement time, indicating non-refractory species measured by AMS might originate from particles consisting of internally mixed non-refractory and refractory components. In addition, specific relationships of LAAPTOF ion intensities and AMS mass concentrations for non-refractory compounds were found for specific measurement periods. Furthermore, our approach allows for the first time to assign the non-refractory compounds measured by AMS to different particle classes. Overall AMS-nitrate was mainly arising from class 3, while class 5 was dominant during events rich in organic aerosol particles.


2015 ◽  
Vol 15 (4) ◽  
pp. 4677-4724 ◽  
Author(s):  
S. Schmidt ◽  
J. Schneider ◽  
T. Klimach ◽  
S. Mertes ◽  
L. P. Schenk ◽  
...  

Abstract. This paper presents results from the "INUIT-JFJ/CLACE 2013" field campaign at the high alpine research station Jungfraujoch in January/February 2013. The chemical composition of ice particle residuals (IPR) in a size diameter range of 200–900 nm was measured in orographic, convective and non-convective clouds with a single particle mass spectrometer (ALABAMA) under ambient conditions characterized by temperatures between −28 and −4 °C and wind speed from 0.1 to 21 km h−1. Additionally, background aerosol particles in cloud free air were investigated. The IPR were sampled from mixed-phase clouds with two inlets which selectively extract small ice crystals in-cloud, namely the Counterflow Virtual Impactor (Ice-CVI) and the Ice Selective Inlet (ISI). The IPR as well as the aerosol particles were classified into seven different particle types: (1) black carbon, (2) organic carbon, (3) black carbon internally mixed with organic carbon, (4) minerals, (5) one particle group (termed "BioMinSal") that may contain biological particles, minerals, or salts, (6) industrial metals, and (7) lead containing particles. For any sampled particle population it was determined by means of single particle mass spectrometer how many of the analyzed particles belonged to each of these categories. Accordingly, between 20 and 30% of the IPR and roughly 42% of the background particles contained organic carbon. The measured fractions of minerals in the IPR composition varied from 6 to 33%, while the values for the "BioMinSal" group were between 15 and 29%. Four percent to 31% of the IPR contained organic carbon mixed with black carbon. Both inlets delivered similar results of the chemical composition and of the particle size distribution, although lead was found only in the IPR sampled by the Ice-CVI. The results show that the ice particle residual composition varies substantially between different cloud events, which indicates the influence of different meteorological conditions, such as origin of the air masses, temperature and wind speed.


2012 ◽  
Vol 12 (4) ◽  
pp. 1681-1700 ◽  
Author(s):  
R. M. Healy ◽  
J. Sciare ◽  
L. Poulain ◽  
K. Kamili ◽  
M. Merkel ◽  
...  

Abstract. An Aerosol Time-Of-Flight Mass Spectrometer (ATOFMS) was deployed to investigate the size-resolved chemical composition of single particles at an urban background site in Paris, France, as part of the MEGAPOLI winter campaign in January/February 2010. ATOFMS particle counts were scaled to match coincident Twin Differential Mobility Particle Sizer (TDMPS) data in order to generate hourly size-resolved mass concentrations for the single particle classes observed. The total scaled ATOFMS particle mass concentration in the size range 150–1067 nm was found to agree very well with the sum of concurrent High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and Multi-Angle Absorption Photometer (MAAP) mass concentration measurements of organic carbon (OC), inorganic ions and black carbon (BC) (R2 = 0.91). Clustering analysis of the ATOFMS single particle mass spectra allowed the separation of elemental carbon (EC) particles into four classes: (i) EC attributed to biomass burning (ECbiomass), (ii) EC attributed to traffic (ECtraffic), (iii) EC internally mixed with OC and ammonium sulfate (ECOCSOx), and (iv) EC internally mixed with OC and ammonium nitrate (ECOCNOx). Average hourly mass concentrations for EC-containing particles detected by the ATOFMS were found to agree reasonably well with semi-continuous quantitative thermal/optical EC and optical BC measurements (r2 = 0.61 and 0.65–0.68 respectively, n = 552). The EC particle mass assigned to fossil fuel and biomass burning sources also agreed reasonably well with BC mass fractions assigned to the same sources using seven-wavelength aethalometer data (r2 = 0.60 and 0.48, respectively, n = 568). Agreement between the ATOFMS and other instrumentation improved noticeably when a period influenced by significantly aged, internally mixed EC particles was removed from the intercomparison. 88% and 12% of EC particle mass was apportioned to fossil fuel and biomass burning respectively using the ATOFMS data compared with 85% and 15% respectively for BC estimated from the aethalometer model. On average, the mass size distribution for EC particles is bimodal; the smaller mode is attributed to locally emitted, mostly externally mixed EC particles, while the larger mode is dominated by aged, internally mixed ECOCNOx particles associated with continental transport events. Periods of continental influence were identified using the Lagrangian Particle Dispersion Model (LPDM) "FLEXPART". A consistent minimum between the two EC mass size modes was observed at approximately 400 nm for the measurement period. EC particles below this size are attributed to local emissions using chemical mixing state information and contribute 79% of the scaled ATOFMS EC particle mass, while particles above this size are attributed to continental transport events and contribute 21% of the EC particle mass. These results clearly demonstrate the potential benefit of monitoring size-resolved mass concentrations for the separation of local and continental EC emissions. Knowledge of the relative input of these emissions is essential for assessing the effectiveness of local abatement strategies.


Sign in / Sign up

Export Citation Format

Share Document