scholarly journals Column water vapor determination in night period with a lunar photometer prototype

2013 ◽  
Vol 6 (8) ◽  
pp. 2159-2167 ◽  
Author(s):  
A. Barreto ◽  
E. Cuevas ◽  
B. Damiri ◽  
P. M. Romero ◽  
F. Almansa

Abstract. In this paper we present the preliminary results of atmospheric column-integrated precipitable water vapor (PWV) obtained with a new Lunar Cimel photometer (LC) at the high mountain Izaña Observatory in the period July–August 2011. We have compared quasi-simultaneous nocturnal PWV from LC with PWV from a Global Positioning System (GPS) receiver and nighttime radiosondes (RS92). LC data have been calibrated using the Lunar Langley method (LLM). We complemented this comparative study using quasi-simultaneous daytime PWV from Cimel AERONET (CA), GPS and RS92. Comparison of daytime PWV from CA shows differences between GPS and RS92 up to 0.18 cm. Two different filters, with and approximate bandwidth of 10 nm and central wavelengths at 938 nm (Filter#1) and 937 nm (Filter#2), were mounted onto the LC. Filter#1 is currently used in operational AERONET sun photometers. PWV obtained with LC-Filter#1 showed an overestimation above 0.18 and 0.25 cm compared to GPS and RS92, respectively, and root-mean-square errors (RMSEs) up to 0.27 cm and 0.24 cm, respectively. Filter#2, with a reduced out-of-band radiation, showed very low differences compared with the same references (≤ 0.05 cm) and RMSE values ≤ 0.08 cm in the case of GPS precise orbits. These results demonstrate the ability of the new lunar photometer to obtain accurate and continuous PWV measurements at night, and the remarkable influence of the filter's transmissivity response to PWV determination at nighttime. The use of enhanced bandpass filters in lunar photometry, which is affected by more important inaccuracies than sun photometry, is necessary to infer PWV with similar precision to AERONET.

2013 ◽  
Vol 6 (1) ◽  
pp. 767-793
Author(s):  
A. Barreto ◽  
E. Cuevas ◽  
B. Damiri ◽  
P. M. Romero ◽  
F. Almansa

Abstract. In this paper we present the preliminary results of atmospheric column integrated water vapor (PWV) obtained with a new Lunar Cimel photometer (LC) at the high mountain Izaña Observatory in the period July–August, 2011. We have compared nocturnal PWV from LC with PWV from a Global Positioning System (GPS) receiver and nighttime radiosondes (RS92). LC data have been calibrated using the Lunar Langley Method (LLM). We complemented this comparative study using quasi-simultaneous daytime PWV from Cimel AERONET (CA), GPS and RS92. Comparison of daytime PWV from CA shows differences against GPS and RS92 up to 0.18 cm. Two different filters, with and approximate bandwidth of 10 nm and central wavelengths at 938 nm (Filter#1) and 937 nm (Filter#2), were mounted into the LC. Filter#1 is currently used in operational AERONET sunphotometers. PWV obtained with LC-Filter#1 showed an overestimation above 0.18 and 0.25 cm compared to GPS and RS92, respectively, meanwhile Filter#2, with a reduced out-of-band radiation, showed very low differences compared with the same references (≤0.03 cm). These results demonstrate the ability of the new lunar photometer to obtain accurate and continuous PWV measurements at night in addition to the notably influence of the filter's transmissivity response on PWV determination at nighttime. The use of enhanced bandpass filters in lunar photometry, which is affected by more important inaccuracies than sun-photometry, is necessary to infer PWV with similar precision than AERONET.


2015 ◽  
Vol 7 (1) ◽  
pp. 240-250 ◽  
Author(s):  
Wayan Suparta ◽  
Maszidah Muhammad ◽  
Mandeep Singh Jit Singh ◽  
Fredolin T. Tangang ◽  
Mardina Abdullah ◽  
...  

This study utilizes the precipitable water vapor (PWV) parameter retrieved from ground-based global positioning system (GPS) to detect warming activity in Peninsular Malaysia from 2008 to 2011. Daily average of GPS PWV and surface meteorology data taken from six selected stations over Peninsular Malaysia are analyzed. Prior to warming detection, GPS PWV results are compared with PWV obtained from Radiosonde and found a positive relationship. The daily GPS PWV variability was characterized as high during the inter-monsoon seasons (April-May and October-November) and lower at the beginning, middle and the end of the year. For the monthly variations, GPS PWV increased by about 2.40 mm, which is correlated with an increase in surface temperature of 0.20 °C. We detected variability of PWV with a semiannual variation and the pattern is opposite to the accumulated precipitation, indicating that wet and dry spells coincide with local monsoon and intermonsoon periods. The warming effect in this study was felt over all selected stations with northern parts of Peninsular Malaysia affected significantly. The results imply that GPS is a powerful tool for analysis of warming effects and the mechanism of how it affects the circulation of water vapor is discussed in this study.


2005 ◽  
Vol 22 (2) ◽  
pp. 201-210 ◽  
Author(s):  
Joël Van Baelen ◽  
Jean-Pierre Aubagnac ◽  
Alain Dabas

Abstract In this study, the authors compare the integrated water vapor (IWV) retrieved with a global positioning system (GPS) receiver, radiosondes (RS), and a microwave radiometer (MWR) using data collected simultaneously during a 3-month campaign in the fall of 2002 in Toulouse, France. In particular for this study, the GPS analysis was performed in near–real time to provide estimates of the IWV in order to evaluate the potential of GPS observations for operational meteorological purposes. Although the three instrument estimates agree quite well together, the IWV estimates retrieved by GPS are generally larger than those of RS, while evidence is shown of a marked diurnal cycle: the differences are larger during the day (up to 2 mm) than at night (less than 0.5 mm). This can be explained by a daytime dry bias of the RS. Regarding the MWR, similar findings but to a lesser extent (differences between 0 and 1 mm) are reported. Furthermore, it has been established that the GPS estimates exhibit a strong dependency upon the IWV values resulting in a 15% faster variation when compared to the other means of IWV estimation in this study.


Sign in / Sign up

Export Citation Format

Share Document