scholarly journals Validating MODIS above-cloud aerosol optical depth retrieved from “color ratio” algorithm using direct measurements made by NASA's airborne AATS and 4STAR sensors

2016 ◽  
Vol 9 (10) ◽  
pp. 5053-5062 ◽  
Author(s):  
Hiren Jethva ◽  
Omar Torres ◽  
Lorraine Remer ◽  
Jens Redemann ◽  
John Livingston ◽  
...  

Abstract. We present the validation analysis of above-cloud aerosol optical depth (ACAOD) retrieved from the “color ratio” method applied to MODIS cloudy-sky reflectance measurements using the limited direct measurements made by NASA's airborne Ames Airborne Tracking Sunphotometer (AATS) and Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) sensors. A thorough search of the airborne database collection revealed a total of five significant events in which an airborne sun photometer, coincident with the MODIS overpass, observed partially absorbing aerosols emitted from agricultural biomass burning, dust, and wildfires over a low-level cloud deck during SAFARI-2000, ACE-ASIA 2001, and SEAC4RS 2013 campaigns, respectively. The co-located satellite-airborne matchups revealed a good agreement (root-mean-square difference  <  0.1), with most matchups falling within the estimated uncertainties associated the MODIS retrievals (about −10 to +50 %). The co-retrieved cloud optical depth was comparable to that of the MODIS operational cloud product for ACE-ASIA and SEAC4RS, however, higher by 30–50 % for the SAFARI-2000 case study. The reason for this discrepancy could be attributed to the distinct aerosol optical properties encountered during respective campaigns. A brief discussion on the sources of uncertainty in the satellite-based ACAOD retrieval and co-location procedure is presented. Field experiments dedicated to making direct measurements of aerosols above cloud are needed for the extensive validation of satellite-based retrievals.

2016 ◽  
Author(s):  
Hiren Jethva ◽  
Omar Torres ◽  
Lorraine Remer ◽  
Jens Redemann ◽  
John Livingston ◽  
...  

Abstract. We present the first ever validation of above-cloud aerosol optical depth (ACAOD) retrieved from the "color ratio" method applied to MODIS cloudy-sky reflectance measurements using the limited direct measurements made by NASA's airborne AATS and 4STAR sensors. A thorough search of the airborne database collection revealed a total of five events in which airborne sunphotometer, coincident with the MODIS overpass, observed agricultural biomass burning, dust, and wildfire-emitted aerosols above a low-level cloud deck during SAFARI-2000, ACE-ASIA 2001, and SEAC4RS-2013 campaigns, respectively. The co-located satellite-airborne measurements revealed a good agreement (root-mean-square-error 


2020 ◽  
Author(s):  
Charles K. Gatebe ◽  
Hiren Jethva ◽  
Ritesh Gautam ◽  
Rajesh Poudyal ◽  
Tamas Várnai

Abstract. The retrieval of aerosol parameters from passive satellite instruments in cloudy scenes is challenging partly because clouds and cloud-related processes may significantly modify aerosol optical depth (AOD) and particle size, a problem that is further compounded by the 3D radiative processes. Recent advances in retrieval algorithms such as the “color ratio” method which utilizes the measurements at a shorter (470 nm) and a longer (860 nm) wavelength have demonstrated the simultaneous derivation of AOD and cloud optical depth (COD) for scenes where absorbing aerosols are found to overlay low-level cloud decks. This study shows simultaneous retrievals of above-cloud aerosol optical depth (ACAOD) and aerosol-corrected cloud optical depth (COD) from airborne measurements of cloud-reflected and sky radiances using the color ratio method. These airborne measurements were taken over marine stratocumulus clouds with NASA's Cloud Absorption Radiometer (CAR) during SAFARI 2000 field campaign offshore of Namibia. The ACAOD is partitioned between the AOD below aircraft (AOD_cloudtop) and above aircraft AOD (AOD_sky). The results show good agreement between AOD_sky and sunphotometer measurements of the above aircraft AOD. The results also show that the use of aircraft-based sunphotometer measurements to validate satellite retrievals of the ACAOD is complicated by the lack of information on AOD below aircraft. Specifically, the CAR-retrieved AOD_cloudtop captures this “missing” aerosol layer caught between the aircraft and cloud top, which is required to quantify above cloud aerosol loading and effectively validate satellite retrievals. In addition, the study finds a strong anticorrelation between the AOD_cloudtop and COD for cases where COD  10, which may be associated with the uncertainties in the color ratio method at lower AODs and CODs. The influence of 3D radiative effects on the retrievals is examined and the results show that at cloud troughs, 3D effects increase retrieved ACAOD by about 3–10 % and retrieved COD by about 25 %. The results show that the color ratio method has little sensitivity to 3D effects at overcast stratocumulus cloud decks. These results demonstrate a novel airborne measurement approach for assessing satellite retrievals of aerosols above clouds, thereby filling a major gap that exists in the global aerosol observations.


2021 ◽  
Vol 14 (2) ◽  
pp. 1405-1423
Author(s):  
Charles K. Gatebe ◽  
Hiren Jethva ◽  
Ritesh Gautam ◽  
Rajesh Poudyal ◽  
Tamás Várnai

Abstract. The retrieval of aerosol parameters from passive satellite instruments in cloudy scenes is challenging, partly because clouds and cloud-related processes may significantly modify aerosol optical depth (AOD) and particle size, a problem that is further compounded by 3D radiative processes. Recent advances in retrieval algorithms such as the “color ratio” method, which utilizes the measurements at a shorter (470 nm) and a longer (860 nm) wavelength, have demonstrated the simultaneous derivation of AOD and cloud optical depth (COD) for scenes in which absorbing aerosols are found to overlay low-level cloud decks. This study shows simultaneous retrievals of above-cloud aerosol optical depth (ACAOD) and aerosol-corrected cloud optical depth (COD) from airborne measurements of cloud-reflected and sky radiances using the color ratio method. These airborne measurements were taken over marine stratocumulus clouds with NASA's Cloud Absorption Radiometer (CAR) during the SAFARI 2000 field campaign offshore of Namibia. The ACAOD is partitioned between the AOD below-aircraft (AOD_cloudtop) and above-aircraft AOD (AOD_sky). The results show good agreement between AOD_sky and sun-photometer measurements of the above-aircraft AOD. The results also show that the use of aircraft-based sun-photometer measurements to validate satellite retrievals of the ACAOD is complicated by the lack of information on AOD below aircraft. Specifically, the CAR-retrieved AOD_cloudtop captures this “missing” aerosol layer caught between the aircraft and cloud top, which is required to quantify above-cloud aerosol loading and effectively validate satellite retrievals. In addition, the study finds a strong anticorrelation between the AOD_cloudtop and COD for cases in which COD < 10 and a weaker anticorrelation for COD > 10, which may be associated with the uncertainties in the color ratio method at lower AODs and CODs. The influence of 3D radiative effects on the retrievals is examined, and the results show that at cloud troughs, 3D effects increase retrieved ACAOD by about 3 %–11 % and retrieved COD by about 25 %. The results show that the color ratio method has little sensitivity to 3D effects at overcast stratocumulus cloud decks. These results demonstrate a novel airborne measurement approach for assessing satellite retrievals of aerosols above clouds, thereby filling a major gap in global aerosol observations.


2018 ◽  
Vol 11 (10) ◽  
pp. 5837-5864 ◽  
Author(s):  
Hiren Jethva ◽  
Omar Torres ◽  
Changwoo Ahn

Abstract. Aerosol–cloud interaction continues to be one of the leading uncertain components of climate models, primarily due to the lack of adequate knowledge of the complex microphysical and radiative processes of the aerosol–cloud system. Situations when light-absorbing aerosols such as carbonaceous particles and windblown dust overlay low-level cloud decks are commonly found in several regions of the world. Contrary to the known cooling effects of these aerosols in cloud-free scenario over darker surfaces, an overlapping situation of the absorbing aerosols over the cloud can lead to a significant level of atmospheric absorption exerting a positive radiative forcing (warming) at the top of the atmosphere. We contribute to this topic by introducing a new global product of above-cloud aerosol optical depth (ACAOD) of absorbing aerosols retrieved from the near-UV observations made by the Ozone Monitoring Instrument (OMI) onboard NASA's Aura platform. Physically based on an unambiguous “color ratio” effect in the near-UV caused by the aerosol absorption above the cloud, the OMACA (OMI above-cloud aerosols) algorithm simultaneously retrieves the optical depths of aerosols and clouds under a prescribed state of the atmosphere. The OMACA algorithm shares many similarities with the two-channel cloud-free OMAERUV algorithm, including the use of AIRS carbon monoxide for aerosol type identification, CALIOP-based aerosol layer height dataset, and an OMI-based surface albedo database. We present the algorithm architecture, inversion procedure, retrieval quality flags, initial validation results, and results from a 12-year long OMI record (2005–2016) including global climatology of the frequency of occurrence, ACAOD, and aerosol-corrected cloud optical depth. A comparative analysis of the OMACA-retrieved ACAOD, collocated with equivalent accurate measurements from the HSRL-2 lidar for the ORACLES Phase I operation (August–September 2016), revealed a good agreement (R = 0.77, RMSE = 0.10). The long-term OMACA record reveals several important regions of the world, where the carbonaceous aerosols from the seasonal biomass burning and mineral dust originated over the continents are found to overlie low-level cloud decks with moderate (0.3 < ACAOD < 0.5, away from the sources) to higher levels of ACAOD (> 0.8 in the proximity to the sources), including the southeastern Atlantic Ocean, southern Indian Ocean, Southeast Asia, the tropical Atlantic Ocean off the coast of western Africa, and northern Arabian sea. No significant long-term trend in the frequency of occurrence of aerosols above the clouds and ACAOD is noticed when OMI observations that are free from the “row anomaly” throughout the operation are considered. If not accounted for, the effects of aerosol absorption above the clouds introduce low bias in the retrieval of cloud optical depth with a profound impact on increasing ACAOD and cloud brightness. The OMACA aerosol product from OMI presented in this paper offers a crucial missing piece of information from the aerosol loading above cloud that will help us to quantify the radiative effects of clouds when overlaid with aerosols and their resultant impact on cloud properties and climate.


2014 ◽  
Vol 119 (9) ◽  
pp. 5104-5114 ◽  
Author(s):  
Zhanqing Li ◽  
Fengsheng Zhao ◽  
Jianjun Liu ◽  
Mengjiao Jiang ◽  
Chuanfeng Zhao ◽  
...  

2021 ◽  
Author(s):  
Omar Torres ◽  
Hiren Jethva ◽  
Changwoo Ahn ◽  
Glen Jaross ◽  
Diego Loyola

&lt;p&gt;The NASA-TROPOMI aerosol algorithm (TropOMAER), is an adaptation of the currently operational OMI near-UV (OMAERUV &amp; OMACA) inversion schemes, that take advantage of TROPOMI&amp;#8217;s unprecedented fine spatial resolution at UV wavelengths, and the availability of ancillary aerosol-related information to derive aerosol loading in cloud-free and above-cloud aerosols scenes. In this presentation we will introduce the NASA TROPOMI aerosol algorithm and discuss initial evaluation results of retrieved aerosol optical depth (AOD) and single scattering albedo (SSA) by direct comparison to AERONET AOD direct measurements and SSA inversions. We will also demonstrate TropOMAER retrieval capabilities in the context of recent continental scale aerosol events.&lt;/p&gt;


2016 ◽  
Vol 9 (2) ◽  
pp. 455-467 ◽  
Author(s):  
D. Toledo ◽  
P. Rannou ◽  
J.-P. Pommereau ◽  
A. Sarkissian ◽  
T. Foujols

Abstract. A small and sophisticated optical depth sensor (ODS) has been designed to work in the atmosphere of Mars. The instrument measures alternatively the diffuse radiation from the sky and the attenuated direct radiation from the Sun on the surface. The principal goals of ODS are to retrieve the daily mean aerosol optical depth (AOD) and to detect very high and optically thin clouds, crucial parameters in understanding the Martian meteorology and climatology. The detection of clouds is undertaken at twilight, allowing the detection and characterization of clouds with opacities below 0.03 (sub-visual clouds). In addition, ODS is capable to retrieve the aerosol optical depth during nighttime from moonlight measurements. Recently, ODS has been selected at the METEO meteorological station on board the ExoMars 2018 Lander. In order to study the performance of ODS under Mars-like conditions as well as to evaluate the retrieval algorithms for terrestrial measurements, ODS was deployed in Ouagadougou (Africa) between November 2004 and October 2005, a Sahelian region characterized by its high dust aerosol load and the frequent occurrence of Saharan dust storms. The daily average AOD values retrieved by ODS were compared with those provided by a CIMEL sunphotometer of the AERONET (Aerosol Robotic NETwork) network localized at the same location. Results represent a good agreement between both ground-based instruments, with a correlation coefficient of 0.77 for the whole data set and 0.94 considering only the cloud-free days. From the whole data set, a total of 71 sub-visual cirrus (SVC) were detected at twilight with opacities as thin as 1.10−3 and with a maximum of occurrence at altitudes between 14 and 20 km. Although further optimizations and comparisons of ODS terrestrial measurements are required, results indicate the potential of these measurements to retrieve the AOD and detect sub-visual clouds.


Sign in / Sign up

Export Citation Format

Share Document