satellite retrievals
Recently Published Documents


TOTAL DOCUMENTS

323
(FIVE YEARS 106)

H-INDEX

47
(FIVE YEARS 4)

Author(s):  
David Hudak ◽  
Éva Mekis ◽  
Peter Rodriguez ◽  
Bo Zhao ◽  
Zen Mariani ◽  
...  

Abstract To assess the performance of the most recent versions of the Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG), namely V05 and V06, in Arctic regions, comparisons with Environment and Climate Change Canada (ECCC) Climate Network stations north of 60°N were performed. This study focuses on the IMERG monthly final products. The mean bias and mean error-weighted bias were assessed in comparison with twenty-five precipitation gauge measurements at ECCC Climate Network stations. The results of this study indicate that IMERG generally detects higher precipitation rates in the Canadian Arctic than ground-based gauge instruments, with differences ranging up to 0.05 mm h−1 and 0.04 mm h−1 for the mean bias and the mean error-weighted bias, respectively. Both IMERG versions perform similarly, except for a few stations, where V06 tends agree slightly better with ground-based measurements. IMERG’s tendency to detect more precipitation is in good agreement with findings indicating that weighing gauge measurement suffer from wind undercatch and other impairing factors, leading to lower precipitation estimates. Biases between IMERG and ground-based stations were found to be slightly larger during summer and fall, which is likely related to the increased precipitation rates during these seasons. Correlations of both versions of IMERG with the ground-based measurements are considerably lower in winter and spring than during summer and fall, which might be linked to issues that Passive Microwave (PMW) sensors encounter over ice and snow. However, high correlation coefficients with medians of 0.75-0.8 during summer and fall are very encouraging for potential future applications.


2021 ◽  
Vol 21 (24) ◽  
pp. 18333-18350
Author(s):  
Robert D. Field ◽  
Jonathan E. Hickman ◽  
Igor V. Geogdzhayev ◽  
Kostas Tsigaridis ◽  
Susanne E. Bauer

Abstract. We examined daily level-3 satellite retrievals of Atmospheric Infrared Sounder (AIRS) CO, Ozone Monitoring Instrument (OMI) SO2 and NO2, and Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth (AOD) over eastern China to understand how COVID-19 lockdowns affected atmospheric composition. Changes in 2020 were strongly dependent on the choice of background period since 2005 and whether trends in atmospheric composition were accounted for. Over central east China during the 23 January–8 April lockdown window, CO in 2020 was between 3 % and 12 % lower than average depending on the background period. The 2020 CO was not consistently less than expected from trends beginning between 2005 and 2016 and ending in 2019 but was 3 %–4 % lower than the background mean during the 2017–2019 period when CO changes had flattened. Similarly for AOD, 2020 was between 14 % and 30 % lower than averages beginning in 2005 and 14 %–17 % lower compared to different background means beginning in 2016. NO2 in 2020 was between 30 % and 43 % lower than the mean over different background periods and between 17 % and 33 % lower than what would be expected for trends beginning later than 2011. Relative to the 2016–2019 period when NO2 had flattened, 2020 was 30 %–33 % lower. Over southern China, 2020 NO2 was between 23 % and 27 % lower than different background means beginning in 2013, the beginning of a period of persistently lower NO2. CO over southern China was significantly higher in 2020 than what would be expected, which we suggest was partly because of an active fire season in neighboring countries. Over central east and southern China, 2020 SO2 was higher than expected, but this depended strongly on how daily regional values were calculated from individual retrievals and reflects background values approaching the retrieval detection limit. Future work over China, or other regions, needs to take into account the sensitivity of differences in 2020 to different background periods and trends in order to separate the effects of COVID-19 on air quality from previously occurring changes or from variability in other sources.


2021 ◽  
Vol 14 (12) ◽  
pp. 7511-7524
Author(s):  
Joseph Mendonca ◽  
Ray Nassar ◽  
Christopher W. O'Dell ◽  
Rigel Kivi ◽  
Isamu Morino ◽  
...  

Abstract. Satellite retrievals of XCO2 at northern high latitudes currently have sparser coverage and lower data quality than most other regions of the world. We use a neural network (NN) to filter Orbiting Carbon Observatory 2 (OCO-2) B10 bias-corrected XCO2 retrievals and compare the quality of the filtered data to the quality of the data filtered with the standard B10 quality control filter. To assess the performance of the NN filter, we use Total Carbon Column Observing Network (TCCON) data at selected northern high latitude sites as a truth proxy. We found that the NN filter decreases the overall bias by 0.25 ppm (∼ 50 %), improves the precision by 0.18 ppm (∼ 12 %), and increases the throughput by 16 % at these sites when compared to the standard B10 quality control filter. Most of the increased throughput was due to an increase in throughput during the spring, fall, and winter seasons. There was a decrease in throughput during the summer, but as a result the bias and precision were improved during the summer months. The main drawback of using the NN filter is that it lets through fewer retrievals at the highest-latitude Arctic TCCON sites compared to the B10 quality control filter, but the lower throughput improves the bias and precision.


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1573
Author(s):  
Rachel Pelley ◽  
David Thomson ◽  
Helen Webster ◽  
Michael Cooke ◽  
Alistair Manning ◽  
...  

We present a Bayesian inversion method for estimating volcanic ash emissions using satellite retrievals of ash column load and an atmospheric dispersion model. An a priori description of the emissions is used based on observations of the rise height of the volcanic plume and a stochastic model of the possible emissions. Satellite data are processed to give column loads where ash is detected and to give information on where we have high confidence that there is negligible ash. An atmospheric dispersion model is used to relate emissions and column loads. Gaussian distributions are assumed for the a priori emissions and for the errors in the satellite retrievals. The optimal emissions estimate is obtained by finding the peak of the a posteriori probability density under the constraint that the emissions are non-negative. We apply this inversion method within a framework designed for use during an eruption with the emission estimates (for any given emission time) being revised over time as more information becomes available. We demonstrate the approach for the 2010 Eyjafjallajökull and 2011 Grímsvötn eruptions. We apply the approach in two ways, using only the ash retrievals and using both the ash and clear sky retrievals. For Eyjafjallajökull we have compared with an independent dataset not used in the inversion and have found that the inversion-derived emissions lead to improved predictions.


Author(s):  
Olha Stepanchenko ◽  
Liubov Shostak ◽  
Olena Kozhushko ◽  
Viktor Moshynskyi ◽  
Petro Martyniuk

The content of organic carbon is one of the essential factors that define soil quality. It is also notoriously challenging to model due to a multitude of biological and abiotic factors influencing the process. In this study, we investigate how decomposition of soil organic matter is affected by soil moisture and temperature. Soil organic carbon turnover is simulated by the CENTURY model. The accuracy of soil moisture data used is ensured by data assimilation approach, combing mathematical model and satellite retrievals. Numerical experiments demonstrate the influence of soil moisture regimes and climate on the quantity of soil humus stocks.


2021 ◽  
Author(s):  
Antonio Capponi ◽  
Natalie J. Harvey ◽  
Helen F. Dacre ◽  
Keith Beven ◽  
Cameron Saint ◽  
...  

Abstract. Volcanic ash advisories are produced by specialised forecasters who combine several sources of observational data and volcanic ash dispersion model outputs based on their subjective expertise. These advisories are used by the aviation industry to make decisions about where it is safe to fly. However, both observations and dispersion model simulations are subject to various sources of uncertainties that are not represented in operational forecasts. Quantification and communication of these uncertainties are fundamental for making more informed decisions. Here, we develop a data assimilation technique which combines satellite retrievals and volcanic ash transport and dispersion model (VATDM) output, considering uncertainties in both data sources. The methodology is applied to a case study of the 2019 Raikoke eruption. To represent uncertainty in the VATDM output, 1000 simulations are performed by simultaneously perturbing the eruption source parameters, meteorology and internal model parameters (known as the prior ensemble). The ensemble members are filtered, based on their level of agreement with Himawari satellite retrievals of ash column loading, to produce a posterior ensemble that is constrained by the satellite data and its uncertainty. For the Raikoke eruption, filtering the ensemble skews the values of mass eruption rate towards the lower values within the wider parameters ranges initially used in the prior ensemble (mean reduces from 1 Tg h−1 to 0.1 Tg h−1). Furthermore, including satellite observations from subsequent times increasingly constrains the posterior ensemble. These results suggest that the prior ensemble leads to an overestimate of both the magnitude and uncertainty in ash column loadings. Based on the prior ensemble, flight operations would have been severely disrupted over the Pacific Ocean. Using the constrained posterior ensemble, the regions where the risk is overestimated are reduced potentially resulting in fewer flight disruptions. The data assimilation methodology developed in this paper is easily generalisable to other short duration eruptions and to other VATDMs and retrievals of ash from other satellites.


2021 ◽  
Vol 893 (1) ◽  
pp. 012065
Author(s):  
IWA Yuda ◽  
T Osawa ◽  
M Nagai ◽  
R Prasetia

Abstract The need for adequate rainfall data in all regions of Indonesia cannot be achieved only by relying on ground observation tools. This work aims to evaluate the application of spatial satellite rainfall data in characterizing rainfall associated with climatic condition over Indonesia. This study applied an Integrated Multi-satellite Retrievals for GPM (IMERG) data using a double correlation method (DCM). The analysis was carried out in the period April 2014 to March 2019. Before regionalization, IMERG V06 data were validated using observed rainfall data from the Agency for Meteorology, Climatology, and Geophysics of the Republic of Indonesia (BMKG). The results showed that 96% of 154 total validation locations have a high correlation score between IMERG and rain gauges (r = 0.5 – 0.97). IMERG was also able to identify monthly and annual rainfall patterns in Indonesia. Based on DCM, we obtained four rainfall regions in Indonesia. Region A has the monsoonal characteristic, covers central and south Indonesia from south Sumatra to Nusa Tenggara, south parts of Kalimantan, some areas of Sulawesi, and parts of Papua. Region B has an equatorial pattern (semi-monsoonal), located in the equatorial area of Indonesia and covers the west and east part of Sumatra and the north-central part of Kalimantan. Region C, with an anti-monsoonal pattern, covers Maluku, western-central Papua, and parts of Sulawesi. Region D is influenced by monsoon and cold surge characteristics, located in the north part of Sumatera and a small portion of northern Kalimantan to the South China Sea region. Besides the new region D, this research also showed five other differences between IMERG-based map and gridded rain gauges’ data-based map (2003). The regionalization results based on IMERG reveal that there is a possibility of updating areas with certain rainfall characters in Indonesia related to resolution, density, and updates data sources.


2021 ◽  
Vol 14 (10) ◽  
pp. 6633-6646
Author(s):  
David Painemal ◽  
Douglas Spangenberg ◽  
William L. Smith Jr. ◽  
Patrick Minnis ◽  
Brian Cairns ◽  
...  

Abstract. Satellite retrievals of cloud droplet effective radius (re) and optical depth (τ) from the Thirteenth Geostationary Operational Environmental Satellite (GOES-13) and the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard Aqua and Terra, based on the Clouds and the Earth's Radiant Energy System (CERES) project algorithms, are evaluated with airborne data collected over the midlatitude boundary layer during the North Atlantic Aerosols and Marine Ecosystems Study (NAAMES). The airborne dataset comprises in situ re from the Cloud Droplet Probe (CDP) and remotely sensed re and τ from the airborne Research Scanning Polarimeter (RSP). GOES-13 and MODIS (Aqua and Terra) re values are systematically greater than those from the CDP and RSP by at least 4.8 (GOES-13) and 1.7 µm (MODIS) despite relatively high linear correlation coefficients (r=0.52–0.68). In contrast, the satellite τ underestimates its RSP counterpart by −3.0, with r=0.76–0.77. Overall, MODIS yields better agreement with airborne data than GOES-13, with biases consistent with those reported for subtropical stratocumulus clouds. While the negative bias in satellite τ is mostly due to the retrievals having been collected in highly heterogeneous cloud scenes, the causes for the positive bias in satellite re, especially for GOES-13, are more complex. Although the high viewing zenith angle (∼65∘) and coarser pixel resolution for GOES-13 could explain a re bias of at least 0.7 µm, the higher GOES-13 re bias relative to that from MODIS is likely rooted in other factors. In this regard, a near-monotonic increase was also observed in GOES-13 re up to 1.0 µm with the satellite scattering angle (Θ) over the angular range 116–165∘; that is, re increases toward the backscattering direction. Understanding the variations of re with Θ will require the combined use of theoretical computations along with intercomparisons of satellite retrievals derived from sensors with dissimilar viewing geometry.


Sign in / Sign up

Export Citation Format

Share Document