scholarly journals Temperature profiles with bi-static Doppler-RASS and their accuracy

2012 ◽  
Vol 5 (1) ◽  
pp. 1075-1100
Author(s):  
B. Hennemuth ◽  
G. Peters ◽  
H.-J. Kirtzel

Abstract. The technique of atmospheric temperature profiling by Doppler-RASS is discussed. The set up with bi-static (separated transmit and receiving) antennas implies a range dependent scattering angle. The retrieval scheme developed by Kon for such antenna geometry is reviewed and its limits of validity are discussed. Empirical tuning of the efficient antenna aperture is proposed to fit the retrieved temperature profiles to reality. Examples of application of the measuring technique for atmospheric boundary layer characterization are presented.

2012 ◽  
Vol 5 (6) ◽  
pp. 1399-1408 ◽  
Author(s):  
B. Hennemuth ◽  
G. Peters ◽  
H.-J. Kirtzel

Abstract. The technique of atmospheric temperature profiling by Doppler-RASS is discussed. The set up with bi-static (separated transmit and receiving) antennas implies a range dependent scattering angle. The retrieval scheme developed by Kon for such antenna geometry is reviewed and its limits of validity are discussed. Empirical tuning of the effective antenna aperture is proposed to fit the retrieved temperature profiles to reality. The method is based on the assumption that potential temperature profiles under presumedly neutral conditions are constant with height. Examples of application of the measuring technique for atmospheric boundary layer characterization are presented.


2012 ◽  
Vol 5 (5) ◽  
pp. 1121-1134 ◽  
Author(s):  
U. Löhnert ◽  
O. Maier

Abstract. The motivation of this study is to verify theoretical expectations placed on ground-based microwave radiometer (MWR) techniques and to confirm whether they are suitable for supporting key missions of national weather services, such as timely and accurate weather advisories and warnings. We evaluate reliability and accuracy of atmospheric temperature profiles retrieved continuously by the microwave profiler system HATPRO (Humidity And Temperature PROfiler) operated at the aerological station of Payerne (MeteoSwiss) in the time period August 2006–December 2009. Assessment is performed by comparing temperatures from the radiometer against temperature measurements from a radiosonde accounting for a total of 2107 quality-controlled all-season cases. In the evaluated time period, the MWR delivered reliable temperature profiles in 86% of all-weather conditions on a temporal resolution of 12–13 min. Random differences between MWR and radiosonde are down to 0.5 K in the lower boundary layer and increase to 1.7 K at 4 km height. The differences observed between MWR and radiosonde in the lower boundary layer are similar to the differences observed between the radiosonde and another in-situ sensor located on a close-by 30 m tower. Temperature retrievals from above 4 km contain less than 5% of the total information content of the measurements, which makes clear that this technique is mainly suited for continuous observations in the boundary layer. Systematic temperature differences are also observed throughout the retrieved profile and can account for up to ±0.5 K. These errors are due to offsets in the measurements of the microwave radiances that have been corrected for in data post-processing and lead to nearly bias-free overall temperature retrievals. Different reasons for the radiance offsets are discussed, but cannot be unambiguously determined retrospectively. Monitoring and, if necessary, corrections for radiance offsets as well as a real-time rigorous automated data quality control are mandatory for microwave profiler systems that are designated for operational temperature profiling. In the analysis of a subset of different atmospheric situations, it is shown that lifted inversions and data quality during precipitation present the largest challenges for operational MWR temperature profiling.


2011 ◽  
Vol 4 (6) ◽  
pp. 7435-7469 ◽  
Author(s):  
U. Löhnert ◽  
O. Maier

Abstract. The motivation of this study is to verify theoretical expectations placed on ground-based radiometer techniques and to confirm whether they are suitable for supporting key missions of national weather services, such as timely and accurate weather advisories and warnings. We evaluate reliability and accuracy of atmospheric temperature profiles retrieved continuously by a HATPRO (Humidity And Temperature PROfiler) system operated at the aerological station of Payerne (MeteoSwiss) in the time period August 2006–December 2009. Assessment is performed by comparing temperatures from the radiometer against temperature measurements from a radiosonde accounting for a total of 2088 quality-controlled all-season cases. In the evaluated time period, HATPRO delivered reliable temperature profiles in 88% of all-weather conditions with a temporal resolution of 15 min. Random differences between HATPRO and radiosonde are down to 0.5 K in the lower boundary layer and rise up to 1.7 K at 4 km height. The differences observed between HATPRO and radiosonde in the lower boundary layer are similar to the differences observed between the radiosonde and another in-situ sensor located on a close-by 30 m tower. Temperature retrievals from above 4 km contain less than 5% of the total information content of the measurements, which makes clear that this technique is mainly suited for continuous observations in the boundary layer. Systematic temperature differences are also observed throughout the retrieved profile and can account for up to ±0.5 K. These errors are due to offsets in the measurements of the microwave radiances that have been corrected for in data post-processing and lead to nearly bias-free overall temperature retrievals. Different reasons for the radiance offsets are discussed, but cannot be unambiguously determined retrospectively. Monitoring and, if necessary, corrections for radiance offsets as well as a real-time rigorous automated data quality control are mandatory for microwave profiler systems that are designated for operational temperature profiling. In the analysis of day/night differences, it is shown that systematic differences between radiosonde and HATPRO decrease throughout the boundary layer if 2 m surface temperature measurements are included in the retrieval.


2011 ◽  
Vol 4 (2) ◽  
pp. 143-149 ◽  
Author(s):  
C. A. Keller ◽  
H. Huwald ◽  
M. K. Vollmer ◽  
A. Wenger ◽  
M. Hill ◽  
...  

Abstract. A new method for measuring air temperature profiles in the atmospheric boundary layer at high spatial and temporal resolution is presented. The measurements are based on Raman scattering distributed temperature sensing (DTS) with a fiber optic cable attached to a tethered balloon. These data were used to estimate the height of the stable nocturnal boundary layer. The experiment was successfully deployed during a two-day campaign in September 2009, providing evidence that DTS is well suited for this atmospheric application. Observed stable temperature profiles exhibit an exponential shape confirming similarity concepts of the temperature inversion close to the surface. The atmospheric mixing height (MH) was estimated to vary between 5 m and 50 m as a result of the nocturnal boundary layer evolution. This value is in good agreement with the MH derived from concurrent Radon-222 (222Rn) measurements and in previous studies.


2010 ◽  
Vol 3 (3) ◽  
pp. 2723-2741 ◽  
Author(s):  
C. A. Keller ◽  
H. Huwald ◽  
M. K. Vollmer ◽  
A. Wenger ◽  
M. Hill ◽  
...  

Abstract. A new method for measuring air temperature profiles in the atmospheric boundary layer at high spatial and temporal resolution is presented. The measurements are based on Raman scattering distributed temperature sensing (DTS) with a fiber optic cable attached to a tethered balloon. These data were used to estimate the height of the stable nocturnal boundary layer. The experiment was successfully deployed during a two-day campaign in September 2009, providing evidence that DTS is well suited for this atmospheric application. Observed stable temperature profiles exhibit an exponential shape confirming similarity concepts of the temperature inversion close to the surface. The atmospheric mixing height (MH) was estimated to vary between 5 m and 50 m as a result of the nocturnal boundary layer evolution. This value is in good agreement to the MH derived from concurrent Radon-222 (222Rn) measurements and in previous studies.


2015 ◽  
Vol 15 (10) ◽  
pp. 5485-5500 ◽  
Author(s):  
A. Behrendt ◽  
V. Wulfmeyer ◽  
E. Hammann ◽  
S. K. Muppa ◽  
S. Pal

Abstract. The rotational Raman lidar (RRL) of the University of Hohenheim (UHOH) measures atmospheric temperature profiles with high resolution (10 s, 109 m). The data contain low-noise errors even in daytime due to the use of strong UV laser light (355 nm, 10 W, 50 Hz) and a very efficient interference-filter-based polychromator. In this paper, the first profiling of the second- to fourth-order moments of turbulent temperature fluctuations is presented. Furthermore, skewness profiles and kurtosis profiles in the convective planetary boundary layer (CBL) including the interfacial layer (IL) are discussed. The results demonstrate that the UHOH RRL resolves the vertical structure of these moments. The data set which is used for this case study was collected in western Germany (50°53'50.56'' N, 6°27'50.39'' E; 110 m a.s.l.) on 24 April 2013 during the Intensive Observations Period (IOP) 6 of the HD(CP)2 (High-Definition Clouds and Precipitation for advancing Climate Prediction) Observational Prototype Experiment (HOPE). We used the data between 11:00 and 12:00 UTC corresponding to 1 h around local noon (the highest position of the Sun was at 11:33 UTC). First, we investigated profiles of the total noise error of the temperature measurements and compared them with estimates of the temperature measurement uncertainty due to shot noise derived with Poisson statistics. The comparison confirms that the major contribution to the total statistical uncertainty of the temperature measurements originates from shot noise. The total statistical uncertainty of a 20 min temperature measurement is lower than 0.1 K up to 1050 m a.g.l. (above ground level) at noontime; even for single 10 s temperature profiles, it is smaller than 1 K up to 1020 m a.g.l. Autocovariance and spectral analyses of the atmospheric temperature fluctuations confirm that a temporal resolution of 10 s was sufficient to resolve the turbulence down to the inertial subrange. This is also indicated by the integral scale of the temperature fluctuations which had a mean value of about 80 s in the CBL with a tendency to decrease to smaller values towards the CBL top. Analyses of profiles of the second-, third-, and fourth-order moments show that all moments had peak values in the IL around the mean top of the CBL which was located at 1230 m a.g.l. The maximum of the variance profile in the IL was 0.39 K2 with 0.07 and 0.11 K2 for the sampling error and noise error, respectively. The third-order moment (TOM) was not significantly different from zero in the CBL but showed a negative peak in the IL with a minimum of −0.93 K3 and values of 0.05 and 0.16 K3 for the sampling and noise errors, respectively. The fourth-order moment (FOM) and kurtosis values throughout the CBL were not significantly different to those of a Gaussian distribution. Both showed also maxima in the IL but these were not statistically significant taking the measurement uncertainties into account. We conclude that these measurements permit the validation of large eddy simulation results and the direct investigation of turbulence parameterizations with respect to temperature.


2013 ◽  
Vol 26 (2) ◽  
pp. 205-213 ◽  
Author(s):  
John J. Cassano

AbstractSmall Unmanned Meteorological Observer (SUMO) unmanned aerial vehicles (UAVs) were used to observe atmospheric boundary layer temperature profiles in the vicinity of McMurdo Station, Antarctica during January and September 2012. The observations from four flight days are shown and exhibit a variety of boundary layer temperature profiles ranging from deep, well-mixed conditions to strong, shallow inversions. Repeat UAV profiles over short periods of time (tens of minutes to several hours) revealed rapid changes in boundary layer structure. The success of the SUMO flights described here demonstrates the potential for using small UAVs for Antarctic research.


Sign in / Sign up

Export Citation Format

Share Document