scholarly journals Evaluation of turbulent dissipation rate retrievals from Doppler cloud radar

2012 ◽  
Vol 5 (1) ◽  
pp. 747-774 ◽  
Author(s):  
M. D. Shupe ◽  
I. M. Brooks ◽  
G. Canut

Abstract. Turbulent dissipation rate retrievals from cloud radar Doppler velocity measurements are evaluated using independent, in situ observations in Arctic stratocumulus clouds. In situ validation data sets of dissipation rate are derived using sonic anemometer measurements from a tethered balloon and high frequency pressure variation observations from a research aircraft, both flown in proximity to stationary, ground-based radars. Modest biases are found among the data sets in particularly low- or high-turbulence regimes, but in general the radar-retrieved values correspond well with the in situ measurements. Root mean square differences are typically a factor of 4–6 relative to any given magnitude of dissipation rate. These differences are no larger than those found when comparing dissipation rates computed from tethered-balloon and 15-m tower sonic measurements made at spatial distances of a few hundred meters. Moreover, radar retrievals are able to capture the vertical dissipation rate structure observed by the in situ sensors, while offering substantially more information on the time variability of turbulence profiles. Together these evaluations indicate that radar-based retrievals can, at a minimum, be used to determine the vertical structure of turbulence in Arctic stratocumulus clouds.

2012 ◽  
Vol 5 (6) ◽  
pp. 1375-1385 ◽  
Author(s):  
M. D. Shupe ◽  
I. M. Brooks ◽  
G. Canut

Abstract. Turbulent dissipation rate retrievals from cloud radar Doppler velocity measurements are evaluated using independent, in situ observations in Arctic stratocumulus clouds. In situ validation data sets of dissipation rate are derived using sonic anemometer measurements from a tethered balloon and high frequency pressure variation observations from a research aircraft, both flown in proximity to stationary, ground-based radars. Modest biases are found among the data sets in particularly low- or high-turbulence regimes, but in general the radar-retrieved values correspond well with the in situ measurements. Root mean square differences are typically a factor of 4–6 relative to any given magnitude of dissipation rate. These differences are no larger than those found when comparing dissipation rates computed from tethered-balloon and meteorological tower-mounted sonic anemometer measurements made at spatial distances of a few hundred meters. Temporal lag analyses suggest that approximately half of the observed differences are due to spatial sampling considerations, such that the anticipated radar-based retrieval uncertainty is on the order of a factor of 2–3. Moreover, radar retrievals are clearly able to capture the vertical dissipation rate structure observed by the in situ sensors, while offering substantially more information on the time variability of turbulence profiles. Together these evaluations indicate that radar-based retrievals can, at a minimum, be used to determine the vertical structure of turbulence in Arctic stratocumulus clouds.


2008 ◽  
Vol 25 (4) ◽  
pp. 547-557 ◽  
Author(s):  
Matthew D. Shupe ◽  
Pavlos Kollias ◽  
Michael Poellot ◽  
Edwin Eloranta

Abstract A method for deriving vertical air motions from cloud radar Doppler spectrum measurements is introduced. The method is applicable to cloud volumes containing small particles, in this case liquid droplets, which are assumed to trace vertical air motions because of their limited size. The presence of liquid droplets is confirmed using multiple ground-based remote sensors. Corrections for Doppler spectrum broadening due to turbulence, wind shear, and radar beamwidth are applied. As a result of the turbulence broadening correction, the turbulent dissipation rate can also be estimated. This retrieval is demonstrated using measurements from the Department of Energy (DOE) Atmospheric Radiation Measurement Program’s (ARM) site in Barrow, Alaska, during the Mixed-Phase Arctic Cloud Experiment (MPACE) of autumn 2004. Comparisons of the retrievals with measurements by research aircraft near Barrow indicate that, on the whole, the retrievals perform well. A small bias in vertical velocity between the retrievals and aircraft measurements is found, based on a statistical comparison of four cases comprising nearly 6 h of data. Turbulent dissipation rate comparisons suggest that the radar-retrieved vertical velocity might be slightly underestimated because of an underestimate of the turbulence broadening correction. However, large uncertainties in aircraft vertical velocity measurements likely impact the comparison.


2021 ◽  
Author(s):  
Teresa Vogl ◽  
Maximilian Maahn ◽  
Stefan Kneifel ◽  
Willi Schimmel ◽  
Dmitri Moisseev ◽  
...  

Abstract. Riming, i.e. the accretion and freezing of SLW on ice particles in mixed-phase clouds, is an important pathway for precipitation formation. Detecting and quantifying riming using ground-based cloud radar observations is of great interest, however, approaches based on measurements of the mean Doppler velocity (MDV) are unfeasible in convective and orographically influenced cloud systems. Here, we show how artificial neural networks (ANNs) can be used to predict riming using ground-based zenith-pointing cloud radar variables as input features. ANNs are a versatile means to extract relations from labeled data sets, which contain input features along with the expected target values. Training data are extracted from a data set acquired during winter 2014 in Finland, containing both Ka-band cloud radar and in-situ observations of snowfall. We focus on two configurations of input variables: ANN #1 uses the equivalent radar reflectivity factor (Ze), MDV, the width from left to right edge of the spectrum above the noise floor (spectrum edge width; SEW), and the skewness as input features. ANN #2 only uses Ze, SEW and skewness. The application of these two ANN configurations to case studies from different data sets demonstrates that both are able to predict strong riming (riming index = 1) and yield low values (riming index ≤ 0.4) for unrimed snow. In general, the predictions of ANN #1 and ANN #2 are very similar, advocating the capability to predict riming without the use of MDV. It is demonstrated that both ANN setups are able to generalize to W-band radar data. The predictions of both ANNs for a wintertime convective cloud fit coinciding in-situ observations extremely well, suggesting the possibility to predict riming even within convective systems. Application of ANN #2 to an orographic case yields high riming index values coinciding with observations of solid graupel particles at the ground.


2019 ◽  
Vol 36 (2) ◽  
pp. 281-296 ◽  
Author(s):  
Lucas Merckelbach ◽  
Anja Berger ◽  
Gerd Krahmann ◽  
Marcus Dengler ◽  
Jeffrey R. Carpenter

Abstract The turbulent dissipation rate ε is a key parameter to many oceanographic processes. Recently, gliders have been increasingly used as a carrier for microstructure sensors. Compared to conventional ship-based methods, glider-based microstructure observations allow for long-duration measurements under adverse weather conditions and at lower costs. The incident water velocity U is an input parameter for the calculation of the dissipation rate. Since U cannot be measured using the standard glider sensor setup, the parameter is normally computed from a steady-state glider flight model. As ε scales with U2 or U4, depending on whether it is computed from temperature or shear microstructure, respectively, flight model errors can introduce a significant bias. This study is the first to use measurements of in situ glider flight, obtained with a profiling Doppler velocity log and an electromagnetic current meter, to test and calibrate a flight model, extended to include inertial terms. Compared to a previously suggested flight model, the calibrated model removes a bias of approximately 1 cm s−1 in the incident water velocity, which translates to roughly a factor of 1.2 in estimates of the dissipation rate. The results further indicate that 90% of the estimates of the dissipation rate from the calibrated model are within a factor of 1.1 and 1.2 for measurements derived from microstructure temperature sensors and shear probes, respectively. We further outline the range of applicability of the flight model.


2017 ◽  
Vol 34 (7) ◽  
pp. 1585-1590 ◽  
Author(s):  
Valery Melnikov ◽  
Dusan S. Zrnić

AbstractIt is shown that the NEXRAD weather radar with enhanced detectability is capable of observing the evolution of convective thermals. The fields of radar differential reflectivity show that the upper parts of the thermals are observable due to Bragg scatter, whereas scattering from insects dominates in the lower parts. The thermal-top rise rate is between 1.5 and 3.7 m s−1 in the analyzed case. Radar observations of thermals also enable estimations of their maximum heights, horizontal sizes, and the turbulent dissipation rate within each thermal. These attributes characterize the intensity of convection.


2002 ◽  
Vol 103 (3) ◽  
pp. 361-389 ◽  
Author(s):  
Sandra Jacoby-Koaly ◽  
B. Campistron ◽  
S. Bernard ◽  
B. Bénech ◽  
F. Ardhuin-Girard ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document