scholarly journals Interpreting SBUV smoothing errors: an example using the Quasi-Biennial Oscillation

2013 ◽  
Vol 6 (2) ◽  
pp. 2721-2749 ◽  
Author(s):  
N. A. Kramarova ◽  
P. K. Bhartia ◽  
S. M. Frith ◽  
R. D. McPeters ◽  
R. S. Stolarski

Abstract. The Solar Backscattered Ultraviolet (SBUV) observing system consists of a series of instruments that have been measuring both total ozone and the ozone profile since 1970. SBUV measures the profile in the upper stratosphere with a resolution that is adequate to resolve most of the important features of that region. In the lower stratosphere the limited vertical resolution of the SBUV system means that there are components of the profile variability that SBUV cannot measure. The smoothing error, as defined in the Optimal Estimation retrieval method, describes the components of the profile variability that the SBUV observing system cannot measure. In this paper we provide a simple visual interpretation of the SBUV smoothing error by comparing SBUV ozone anomalies in the lower tropical stratosphere associated with the Quasi Biennial Oscillation (QBO) to anomalies obtained from the Aura Microwave Limb Sounder (MLS). We describe a methodology for estimating the SBUV smoothing error for monthly zonal mean (mzm) profiles. We construct covariance matrices that describe the statistics of the inter-annual ozone variability using a 6-yr record of Aura MLS and ozonesonde data. We find that the smoothing error is of the order of 1% between 10 hPa and 1 hPa, increasing up to 15–20% in the troposphere and up to 5% in the mesosphere. The smoothing error for total ozone columns is small, mostly less than 0.5%. We demonstrate that by merging the partial ozone columns from several layers in the lower stratosphere/troposphere into one thick layer, we can minimize the smoothing error. We recommend using the following layer combinations to reduce the smoothing error to about 1%: surface to 25 hPa (16 hPa) outside (inside) of the narrow equatorial zone 20° S–20° N.

2013 ◽  
Vol 6 (8) ◽  
pp. 2089-2099 ◽  
Author(s):  
N. A. Kramarova ◽  
P. K. Bhartia ◽  
S. M. Frith ◽  
R. D. McPeters ◽  
R. S. Stolarski

Abstract. The Solar Backscattered Ultraviolet (SBUV) observing system consists of a series of instruments that have been measuring both total ozone and the ozone profile since 1970. SBUV measures the profile in the upper stratosphere with a resolution that is adequate to resolve most of the important features of that region. In the lower stratosphere the limited vertical resolution of the SBUV system means that there are components of the profile variability that SBUV cannot measure. The smoothing error, as defined in the optimal estimation retrieval method, describes the components of the profile variability that the SBUV observing system cannot measure. In this paper we provide a simple visual interpretation of the SBUV smoothing error by comparing SBUV ozone anomalies in the lower tropical stratosphere associated with the quasi-biennial oscillation (QBO) to anomalies obtained from the Aura Microwave Limb Sounder (MLS). We describe a methodology for estimating the SBUV smoothing error for monthly zonal mean (mzm) profiles. We construct covariance matrices that describe the statistics of the inter-annual ozone variability using a 6 yr record of Aura MLS and ozonesonde data. We find that the smoothing error is of the order of 1% between 10 and 1 hPa, increasing up to 15–20% in the troposphere and up to 5% in the mesosphere. The smoothing error for total ozone columns is small, mostly less than 0.5%. We demonstrate that by merging the partial ozone columns from several layers in the lower stratosphere/troposphere into one thick layer, we can minimize the smoothing error. We recommend using the following layer combinations to reduce the smoothing error to about 1%: surface to 25 hPa (16 hPa) outside (inside) of the narrow equatorial zone 20° S–20° N.


2013 ◽  
Vol 13 (9) ◽  
pp. 4563-4575 ◽  
Author(s):  
T. Flury ◽  
D. L. Wu ◽  
W. G. Read

Abstract. We use Aura/MLS stratospheric water vapour (H2O) measurements as tracer for dynamics and infer interannual variations in the speed of the Brewer–Dobson circulation (BDC) from 2004 to 2011. We correlate one-year time series of H2O in the lower stratosphere at two subsequent pressure levels (68 hPa, ~18.8 km and 56 hPa, ~19.9 km at the Equator) and determine the time lag for best correlation. The same calculation is made on the horizontal on the 100 hPa (~16.6 km) level by correlating the H2O time series at the Equator with the ones at 40° N and 40° S. From these lag coefficients we derive the vertical and horizontal speeds of the BDC in the tropics and extra-tropics, respectively. We observe a clear interannual variability of the vertical and horizontal branch. The variability reflects signatures of the Quasi Biennial Oscillation (QBO). Our measurements confirm the QBO meridional circulation anomalies and show that the speed variations in the two branches of the BDC are out of phase and fairly well anti-correlated. Maximum ascent rates are found during the QBO easterly phase. We also find that transport of H2O towards the Northern Hemisphere (NH) is on the average two times faster than to the Southern Hemisphere (SH) with a mean speed of 1.15 m s−1 at 100 hPa. Furthermore, the speed towards the NH shows much more interannual variability with an amplitude of about 21% whilst the speed towards the SH varies by only 10%. An amplitude of 21% is also observed in the variability of the ascent rate at the Equator which is on the average 0.2 mm s−1.


2017 ◽  
Vol 30 (15) ◽  
pp. 5661-5674 ◽  
Author(s):  
Lawrence Coy ◽  
Paul A. Newman ◽  
Steven Pawson ◽  
Leslie R. Lait

A significant disruption of the quasi-biennial oscillation (QBO) occurred during the Northern Hemisphere (NH) winter of 2015/16. Since the QBO is the major wind variability source in the tropical lower stratosphere and influences the rate of ascent of air entering the stratosphere, understanding the cause of this singular disruption may provide new insights into the variability and sensitivity of the global climate system. Here this disruptive event is examined using global reanalysis winds and temperatures from 1980 to 2016. Results reveal record maxima in tropical horizontal momentum fluxes and wave forcing of the tropical zonal mean zonal wind over the NH 2015/16 winter. The Rossby waves responsible for these record tropical values appear to originate in the NH and were focused strongly into the tropics at the 40-hPa level. Two additional NH winters, 1987/88 and 2010/11, were also found to have large tropical lower-stratospheric momentum flux divergences; however, the QBO westerlies did not change to easterlies in those cases.


Sign in / Sign up

Export Citation Format

Share Document