scholarly journals Organic and inorganic decomposition products from the thermal desorption of atmospheric particles

2015 ◽  
Vol 8 (12) ◽  
pp. 13377-13421 ◽  
Author(s):  
B. J. Williams ◽  
Y. Zhang ◽  
X. Zuo ◽  
R. E. Martinez ◽  
M. J. Walker ◽  
...  

Abstract. Atmospheric aerosol composition is often analyzed using thermal desorption techniques to evaporate samples and deliver organic or inorganic molecules to various designs of detectors for identification and quantification. The organic aerosol (OA) fraction is composed of thousands of individual compounds, some with nitrogen- and sulfur-containing functionality, and often contains oligomeric material, much of which may be susceptible to decomposition upon heating. Here we analyze thermal decomposition products as measured by a thermal desorption aerosol gas chromatograph (TAG) capable of separating thermal decomposition products from thermally stable molecules. The TAG impacts particles onto a collection and thermal desorption (CTD) cell, and upon completion of sample collection, heats and transfers the sample in a helium flow up to 310 °C. Desorbed molecules are refocused at the head of a GC column that is held at 45 °C and any volatile decomposition products pass directly through the column and into an electron impact quadrupole mass spectrometer (MS). Analysis of the sample introduction (thermal decomposition) period reveals contributions of NO+ (m/z 30), NO2+ (m/z 46), SO+ (m/z 48), and SO2+ (m/z 64), derived from either inorganic or organic particle-phase nitrate and sulfate. CO2+ (m/z 44) makes up a major component of the decomposition signal, along with smaller contributions from other organic components that vary with the type of aerosol contributing to the signal (e.g., m/z 53, 82 observed here for isoprene-derived secondary OA). All of these ions are important for ambient aerosol analyzed with the aerosol mass spectrometer (AMS), suggesting similarity of the thermal desorption processes in both instruments. Ambient observations of these decomposition products compared to organic, nitrate, and sulfate mass concentrations measured by an AMS reveal good correlation, with improved correlations for OA when compared to the AMS oxygenated OA (OOA) component. TAG signal found in the traditional compound elution time period reveals higher correlations with AMS hydrocarbon-like OA (HOA) combined with the fraction of OOA that is less oxygenated. Potential to quantify nitrate and sulfate aerosol mass concentrations using the TAG system is explored through analysis of ammonium sulfate and ammonium nitrate standards. While chemical standards display a linear response in the TAG system, re-desorptions of the CTD cell following ambient sample analysis shows some signal carryover on sulfate and organics, and new desorption methods should be developed to improve throughput. Future standards should be composed of complex organic/inorganic mixtures, similar to what is found in the atmosphere, and perhaps will more accurately account for any aerosol mixture effects on compositional quantification.

2016 ◽  
Vol 9 (4) ◽  
pp. 1569-1586 ◽  
Author(s):  
Brent J. Williams ◽  
Yaping Zhang ◽  
Xiaochen Zuo ◽  
Raul E. Martinez ◽  
Michael J. Walker ◽  
...  

Abstract. Atmospheric aerosol composition is often analyzed using thermal desorption techniques to evaporate samples and deliver organic or inorganic molecules to various designs of detectors for identification and quantification. The organic aerosol (OA) fraction is composed of thousands of individual compounds, some with nitrogen- and sulfur-containing functionality and, often contains oligomeric material, much of which may be susceptible to decomposition upon heating. Here we analyze thermal decomposition products as measured by a thermal desorption aerosol gas chromatograph (TAG) capable of separating thermal decomposition products from thermally stable molecules. The TAG impacts particles onto a collection and thermal desorption (CTD) cell, and upon completion of sample collection, heats and transfers the sample in a helium flow up to 310 °C. Desorbed molecules are refocused at the head of a gas chromatography column that is held at 45 °C and any volatile decomposition products pass directly through the column and into an electron impact quadrupole mass spectrometer. Analysis of the sample introduction (thermal decomposition) period reveals contributions of NO+ (m/z 30), NO2+ (m/z 46), SO+ (m/z 48), and SO2+ (m/z 64), derived from either inorganic or organic particle-phase nitrate and sulfate. CO2+ (m/z 44) makes up a major component of the decomposition signal, along with smaller contributions from other organic components that vary with the type of aerosol contributing to the signal (e.g., m/z 53, 82 observed here for isoprene-derived secondary OA). All of these ions are important for ambient aerosol analyzed with the aerosol mass spectrometer (AMS), suggesting similarity of the thermal desorption processes in both instruments. Ambient observations of these decomposition products compared to organic, nitrate, and sulfate mass concentrations measured by an AMS reveal good correlation, with improved correlations for OA when compared to the AMS oxygenated OA (OOA) component. TAG signal found in the traditional compound elution time period reveals higher correlations with AMS hydrocarbon-like OA (HOA) combined with the fraction of OOA that is less oxygenated. Potential to quantify nitrate and sulfate aerosol mass concentrations using the TAG system is explored through analysis of ammonium sulfate and ammonium nitrate standards. While chemical standards display a linear response in the TAG system, redesorptions of the CTD cell following ambient sample analysis show some signal carryover on sulfate and organics, and new desorption methods should be developed to improve throughput. Future standards should be composed of complex organic/inorganic mixtures, similar to what is found in the atmosphere, and perhaps will more accurately account for any aerosol mixture effects on compositional quantification.


2016 ◽  
Vol 50 (9) ◽  
pp. i-xv ◽  
Author(s):  
Jose L. Jimenez ◽  
Manjula R. Canagaratna ◽  
Frank Drewnick ◽  
James D. Allan ◽  
M. Rami Alfarra ◽  
...  

2014 ◽  
Vol 13 (04) ◽  
pp. 1450022 ◽  
Author(s):  
Zerong Daniel Wang ◽  
Meagan Hysmith ◽  
Perla Cristina Quintana

The formation of carbon disulfide ( CS 2) and ammonia ( NH 3) from the thermal decomposition products of thiourea has been studied with MP2, and hybrid module-based density functional theory methods (B3LYP, MPW1PW91 and PBE1PBE), each in conjunction with five different basis sets (6-31+G(2d,2p), 6-311++G(2d,2p), DGDZVP, DGDZVP2 and DGTZVP). The free energy changes and activation energies for all the five primitive reactions involved in the formation of CS 2 and NH 3 have been compared and discussed. The results indicate that CS 2 is most likely formed in a consecutive reaction path that consists of the addition of hydrogen sulfide ( H 2 S ) to isothiocyanic acid (HNCS) to generate carbamodithioic acid and subsequent decomposition of carbamodithioic acid. By contrast, thiocyanic acid (HSCN) as the structural isomer of isothiocyanic acid is not likely the source of CS 2.


Sign in / Sign up

Export Citation Format

Share Document