scholarly journals Cosmic noise absorption signature of particle precipitation during ICME sheaths and ejecta

2019 ◽  
Author(s):  
Emilia Kilpua ◽  
Liisa Juusola ◽  
Maxime Grandin ◽  
Antti Kero ◽  
Stepan Dubyagin ◽  
...  

Abstract. We study here energetic (E > 30 keV) electron precipitation using cosmic noise absorption (CNA) during the sheath and ejecta structures of 61 interplanetary coronal mass ejections (ICMEs) observed in the near-Earth solar wind between 1997 and 2012. The data comes from the Finnish riometer chain from stations extending from auroral (IVA, 65.2 geomagnetic latitude, MLAT) to subauroral (JYV, 59.0 MLAT) latitudes. We find that sheaths and ejecta lead frequently to enhanced CNA (> 0.5 dB) both at auroral and subauroral latitudes, although the CNA magnitudes stay relatively low (medians around 1 dB). Due to their longer duration, ejecta typically lead to more sustained enhanced CNA periods (on average 6–7 hours), but the sheaths and ejecta were found to be equally effective in inducing enhanced CNA when relative occurrence frequency and CNA magnitude were considered. Only at the lowest MLAT station JYV ejecta were more effective in causing enhanced CNA. Some clear magnetic local time (MLT) trends and differences between the ejecta and sheath were found. The occurrence frequency and magnitude of CNA activity was lowest close to midnight, while it peaked for the sheaths in the morning and afternoon/evening sectors and for the ejecta in the morning and noon sectors. These differences may reflect differences in typical MLT distributions of wave modes that precipitate substorm-injected and trapped radiation belt electrons during the sheath and ejecta. Our study also emphasizes the importance of substorms and magnetospheric ULF waves for enhanced CNA.

2020 ◽  
Vol 38 (2) ◽  
pp. 557-574
Author(s):  
Emilia Kilpua ◽  
Liisa Juusola ◽  
Maxime Grandin ◽  
Antti Kero ◽  
Stepan Dubyagin ◽  
...  

Abstract. We study here energetic-electron (E>30 keV) precipitation using cosmic noise absorption (CNA) during the sheath and ejecta structures of 61 interplanetary coronal mass ejections (ICMEs) observed in the near-Earth solar wind between 1997 and 2012. The data come from the Finnish riometer (relative ionospheric opacity meter) chain from stations extending from auroral (IVA, 65.2∘ N geomagnetic latitude; MLAT) to subauroral (JYV, 59.0∘ N MLAT) latitudes. We find that sheaths and ejecta lead frequently to enhanced CNA (>0.5 dB) both at auroral and subauroral latitudes, although the CNA magnitudes stay relatively low (medians around 1 dB). Due to their longer duration, ejecta typically lead to more sustained enhanced CNA periods (on average 6–7 h), but the sheaths and ejecta were found to be equally effective in inducing enhanced CNA when relative-occurrence frequency and CNA magnitude were considered. Only at the lowest-MLAT station, JYV, ejecta were more effective in causing enhanced CNA. Some clear trends of magnetic local time (MLT) and differences between the ejecta and sheaths were found. The occurrence frequency and magnitude of CNA activity was lowest close to midnight, while it peaked for the sheaths in the morning and afternoon/evening sectors and for the ejecta in the morning and noon sectors. These differences may reflect differences in typical MLT distributions of wave modes that precipitate substorm-injected and trapped radiation belt electrons during the sheaths and ejecta. Our study also emphasizes the importance of substorms and magnetospheric ultra-low-frequency (ULF) waves for enhanced CNA.


2021 ◽  
Author(s):  
Qiugang Zong

Abstract. Solar wind forcing, e.g. interplanetary shock and/or solar wind dynamic pressure pulses impact on the Earth’s magnetosphere manifests many fundamental important space physics phenomena including producing electromagnetic waves, plasma heating and energetic particle acceleration. This paper summarizes our present understanding of the magnetospheric response to solar wind forcing in the aspects of radiation belt electrons, ring current ions and plasmaspheric plasma physics based on in situ spacecraft measurements, ground-based magnetometer data, MHD and kinetic simulations. Magnetosphere response to solar wind forcing, is not just a “one-kick” scenario. It is found that after the impact of solar wind forcing on the Earth’s magnetosphere, plasma heating and energetic particle acceleration started nearly immediately and could last for a few hours. Even a small dynamic pressure change of interplanetary shock or solar wind pressure pulse can play a non-negligible role in magnetospheric physics. The impact leads to generate series kind of waves including poloidal mode ultra-low frequency (ULF) waves. The fast acceleration of energetic electrons in the radiation belt and energetic ions in the ring current region response to the impact usually contains two contributing steps: (1) the initial adiabatic acceleration due to the magnetospheric compression; (2) followed by the wave-particle resonant acceleration dominated by global or localized poloidal ULF waves excited at various L-shells. Generalized theory of drift and drift-bounce resonance with growth or decay localized ULF waves has been developed to explain in situ spacecraft observations. The wave related observational features like distorted energy spectrum, boomerang and fishbone pitch angle distributions of radiation belt electrons, ring current ions and plasmaspheric plasma can be explained in the frame work of this generalized theory. It is worthy to point out here that poloidal ULF waves are much more efficient to accelerate and modulate electrons (fundamental mode) in the radiation belt and charged ions (second harmonic) in the ring current region. The results presented in this paper can be widely used in solar wind interacting with other planets such as Mercury, Jupiter, Saturn, Uranus and Neptune, and other astrophysical objects with magnetic fields.


2021 ◽  
Author(s):  
Sarah Bentley ◽  
Rhys Thompson ◽  
Clare Watt ◽  
Jennifer Stout ◽  
Teo Bloch

<p>We present and analyse a freely-available model of the power found in ultra-low frequency waves (ULF, 1-15 mHz) throughout Earth’s magnetosphere. Predictions can be used to test our understanding of magnetospheric dynamics, while accurate models of these waves are required to characterise the energisation and transport of radiation belt electrons in space weather.</p><p>This model is constructed using decision tree ensembles, which iteratively partition the given parameter space into variable size bins. Wave power is determined by physical driving parameters (e.g. solar wind properties) and spatial parameters of interest (magnetic local time MLT, magnetic latitude and frequency). As a parameterised model, there is no guarantee that individual physical processes can be extracted and analysed. However, by iteratively considering smaller scale driving processes, we identify predominant wave drivers and find that solar wind driving of ULF waves are moderated by internal magnetospheric conditions. Significant remaining uncertainty occurs with mild solar wind driving, suggesting that the internal state of the magnetosphere should be included in future.</p><p>Models such as this may be used to create global magnetospheric “maps” of predicted wave power which may then be used to create radial diffusion coefficients determining the effect of ULF waves on radiation belt electrons.</p>


1965 ◽  
Vol 43 (3) ◽  
pp. 457-462
Author(s):  
T. A. Clark ◽  
C. D. Anger

Data obtained at Fort Providence, N.W.T., Canada, during the total solar eclipse of July 20, 1963, indicate that during most of the partial eclipse there was a moderate degree of auroral activity. This activity became slight during the period of totality and no auroral luminosity was detected. Electron precipitation was indicated by an enhancement of the intensity of X rays of energy greater than 9 keV at balloon altitudes and by small amounts of cosmic-noise absorption. A small but irregular increase in cosmic-noise level at 30 Mc/s, which was greater than 0.2 dB at totality, was recorded. It was concluded that the irregularity was caused by small amounts of superimposed auroral absorption.


2021 ◽  
Author(s):  
Qiugang Zong

<p>Solar wind forcing, e.g. interplanetary shock and/or solar wind dynamic pressure pulses impact on the Earth’s magnetosphere manifests many fundamental important space physics phenomena including producing electromagnetic waves, plasma heating and energetic particle acceleration. This paper summarizes our present understanding of the magnetospheric response to solar wind forcing in the aspects of radiation belt electrons, ring current ions and plasmaspheric plasma physic based on in situ spacecraft measurements, ground-based magnetometer data, MHD and kinetic simulations.</p><p>Magnetosphere response to solar wind forcing, is not just “one-kick” scenario. It is found that after the impact of solar wind forcing on the Earth’s magnetosphere, plasma heating and energetic particle acceleration started nearly immediately and could last for a few hours. Even a small dynamic pressure change of interplanetary shock or solar wind pressure pulse can play a non-negligible role in magnetospheric physics. The impact leads to generate series kind of waves including poloidal mode ultra-low frequency (ULF) waves. The fast acceleration of energetic electrons in the radiation belt and energetic ions in the ring current region response to the impact usually contain two contributing steps: (1) the initial adiabatic acceleration due to the magnetospheric compression; (2) followed by the wave-particle resonant acceleration dominated by global or localized poloidal ULF waves excited at various L-shells.</p><p>Generalized theory of drift and drift-bounce resonance with growth or decay localized ULF waves have been developed to explain in situ spacecraft observations. The wave related observational features like distorted energy spectrum, boomerang and fishbone pitch angle distributions of radiation belt electrons, ring current ions and plasmaspheric plasma can be explained in the frame work of this generalized theory. It is worthy to point out here that poloidal ULF wave is much more efficient to accelerate and modulate electrons (fundamental mode) in the radiation belt and charged ions (second harmonic) in the ring current region. The results presented in this paper can be widely used in solar wind interacting with other planets such as Mercury, Jupiter, Saturn, Uranus and Neptune, and other astrophysical objects with magnetic fields.</p>


2015 ◽  
Vol 120 (10) ◽  
pp. 8572-8585 ◽  
Author(s):  
Asif Shah ◽  
C. L. Waters ◽  
M. D. Sciffer ◽  
F. W. Menk ◽  
R. L. Lysak

2020 ◽  
Author(s):  
Alexander Drozdov ◽  
Hayley Allison ◽  
Yuri Shprits ◽  
Nikita Aseev

<p>Radial diffusion is one of the dominant physical mechanisms that drives acceleration andloss of the radiation belt electrons due to wave-particle interactions with ultra-low frequency (ULF) waves, which makes it very important for radiation belt modeling and forecasting.  We investigate the sensitivity of several parameterizations of the radial diffusion including Brautigam and Albert (2000), Ozeke et al. (2014), Ali et al. (2016), and Liu et al. (2016) on long-term radiation belt modeling using the Versatile Electron Radiation Belt (VERB) code.  Following previous studies, we first perform 1-D radial diffusion simulations.  To take into account effects of local acceleration and loss, we perform additional 3-D simulations, including pitch-angle, energy and mixed diffusion.</p>


Sign in / Sign up

Export Citation Format

Share Document