scholarly journals Auroral electrojets and boundaries of plasma domains in the magnetosphere during magnetically disturbed intervals

2006 ◽  
Vol 24 (8) ◽  
pp. 2243-2276 ◽  
Author(s):  
Y. I. Feldstein ◽  
V. A. Popov ◽  
J. A. Cumnock ◽  
A. Prigancova ◽  
L. G. Blomberg ◽  
...  

Abstract. We investigate variations in the location and intensity of the auroral electrojets during magnetic storms and substorms using a numerical method for estimating the equivalent ionospheric currents based on data from meridian chains of magnetic observatories. Special attention was paid to the complex structure of the electrojets and their interrelationship with diffuse and discrete particle precipitation and field-aligned currents in the dusk sector. During magnetospheric substorms the eastward electrojet (EE) location in the evening sector changes with local time from cusp latitudes (Φ~77°) during early afternoon to latitudes of diffuse auroral precipitation (Φ~65°) equatorward of the auroral oval before midnight. During the main phase of an intense magnetic storm the eastward currents in the noon-early evening sector adjoin to the cusp at Φ~65° and in the pre-midnight sector are located at subauroral latitude Φ~57°. The westward electrojet (WE) is located along the auroral oval from evening through night to the morning sector and adjoins to the polar electrojet (PE) located at cusp latitudes in the dayside sector. The integrated values of the eastward (westward) equivalent ionospheric current during the intense substorm are ~0.5 MA (~1.5 MA), whereas they are 0.7 MA (3.0 MA) during the storm main phase maximum. The latitudes of auroral particle precipitation in the dusk sector are identical with those of both electrojets. The EE in the evening sector is accompanied by particle precipitation mainly from the Alfvén layer but also from the near-Earth part of the central plasma sheet. In the lower-latitude part of the EE the field-aligned currents (FACs) flow into the ionosphere (Region 2 FAC), and at its higher-latitude part the FACs flow out of the ionosphere (Region 1 FAC). During intense disturbances, in addition to the Region 2 FAC and the Region 1 FAC, a Region 3 FAC with the downward current was identified. This FAC is accompanied by diffuse electron precipitation from the plasma sheet boundary layer. Actually, the triple system of FAC is observed in the evening sector and, as a consequence, the WE and the EE overlap. The WE in the evening sector comprises only the high-latitude periphery of the plasma precipitation region and corresponds to the Hall current between the Region 1 FAC and Region 3 FAC. During the September 1998 magnetic storm, two velocity bursts (~2–4 km/s) in the magnetospheric convection were observed at the latitudes of particle precipitation from the central plasma sheet and at subauroral latitudes near the ionospheric trough. These kind of bursts are known as subauroral polarization streams (SAPS). In the evening sector the Alfvén layer equatorial boundary for precipitating ions is located more equatorward than that for electrons. This may favour northward electric field generation between these boundaries and may cause high speed westward ions drift visualized as SAPS. Meanwhile, high speed ion drifts cover a wider range of latitudes than the distance between the equatorward boundaries of ions and electrons precipitation. To summarize the results obtained a new scheme of 3-D currents in the magnetosphere-ionosphere system and a clarified view of interrelated 3-D currents and magnetospheric plasma domains are proposed.

2002 ◽  
Vol 20 (11) ◽  
pp. 1737-1741 ◽  
Author(s):  
R. Schödel ◽  
K. Dierschke ◽  
W. Baumjohann ◽  
R. Nakamura ◽  
T. Mukai

Abstract. The plasma sheet plays a key role during magnetic storms because it is the bottleneck through which large amounts of magnetic flux that have been eroded from the dayside magnetopause have to be returned to the dayside magnetosphere. Using about five years of Geotail data we studied the average properties of the near- and midtail central plasma sheet (CPS) in the 10–30 RE range during magnetic storms. The earthward flux transport rate is greatly enhanced during the storm main phase, but shows a significant earthward decrease. Hence, since the magnetic flux cannot be circulated at a sufficient rate, this leads to an average dipolarization of the central plasma sheet. An increase of the specific entropy of the CPS ion population by a factor of about two during the storm main phase provides evidence for nonadiabatic heating processes. The direction of flux transport during the main phase is consistent with the possible formation of a near-Earth neutral line beyond ~20 RE.Key words. Magnetospheric physics (plasma convection; plasma sheet; storms and substorms)


2011 ◽  
Vol 116 (A9) ◽  
pp. n/a-n/a ◽  
Author(s):  
Bingxian Luo ◽  
Weichao Tu ◽  
Xinlin Li ◽  
Jiancun Gong ◽  
Siqing Liu ◽  
...  

1991 ◽  
Vol 96 (A2) ◽  
pp. 1601-1609 ◽  
Author(s):  
Maha Ashour-Abdalla ◽  
Jorg Büchner ◽  
Lev M. Zelenyi

1992 ◽  
Vol 97 (A2) ◽  
pp. 1481 ◽  
Author(s):  
C. Y. Huang ◽  
L. A. Frank ◽  
G. Rostoker ◽  
J. Fennell ◽  
D. G. Mitchell

2003 ◽  
Vol 21 (7) ◽  
pp. 1497-1507 ◽  
Author(s):  
K. Shiokawa ◽  
W. Baumjohann ◽  
G. Paschmann

Abstract. We have studied the occurrence characteristics of bi-directional electron pitch angle anisotropy (enhanced flux in field-aligned directions, F^ /F|| > 1.5) at energies of 0.1–30 keV using plasma and magnetic field data from the AMPTE/IRM satellite in the near-Earth plasma sheet. The occurrence rate increases in the tailward direction from XGSM = - 9 RE to - 19 RE . The occurrence rate is also enhanced in the midnight sector, and furthermore, whenever the elevation angle of the magnetic field is large while the magnetic field intensity is small, B ~ 15 nT. From these facts, we conclude that the bi-directional electrons in the central plasma sheet are produced mainly in the vicinity of the neutral sheet and that the contribution from ionospheric electrons is minor. A high occurrence is also found after earthward high-speed ion flows, suggesting Fermi-type field-aligned electron acceleration in the neutral sheet. Occurrence characteristics of bi-directional electrons in the plasma sheet boundary layer are also discussed.Key words. Magnetospheric physics (magnetospheric configuration and dynamics; magnetotail; plasma sheet)


1994 ◽  
Vol 72 (5-6) ◽  
pp. 266-269 ◽  
Author(s):  
Y. I. Feldstein ◽  
R. D. Elphinstone ◽  
D. J. Hearn ◽  
J. S. Murphree ◽  
L. L. Cogger

Statistical auroral distributions are used in combination with an empirical model of the Earth's magnetic field in an attempt to determine the large-scale magnetospheric source regions for various types of auroral luminosity. The narrow ring of structured auroral emissions during magnetically quiet intervals appears to be associated with the inner region of the nightside central plasma sheet and the dayside entry layer. Under active conditions these discrete structures expand to fill the entire central plasma sheet. The high-altitude boundary plasma sheet on the other hand is more likely to be related to diffuse auroral emissions poleward of this "oval" and to high-latitude polar auroral arcs. Under this scenario, the region of the magnetosphere bounded by the inner edge of the tail current sheet, the plasmasphere, and the dayside entry layer is the source region for the most equatorward diffuse auroral precipitation.


Sign in / Sign up

Export Citation Format

Share Document