substorm onset
Recently Published Documents


TOTAL DOCUMENTS

248
(FIVE YEARS 23)

H-INDEX

40
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Jason Derr ◽  
Richard Wolf ◽  
Stanislav Sazykin ◽  
Frank Toffoletto ◽  
Jian Yang

2021 ◽  
Author(s):  
Reham Elhawary ◽  
Karl Laundal ◽  
Jone Peter Reistad ◽  
Spencer Mark Hatch

2021 ◽  
Vol 39 (3) ◽  
pp. 455-460
Author(s):  
Osuke Saka

Abstract. As proposed by Saka (2019), plasma injections arising out of the auroral ionosphere (ionospheric injection) are a characteristic process of the polar ionosphere at substorm onset. The ionospheric injection is triggered by westward electric fields transmitted from the convection surge in the magnetosphere at field line dipolarization. Localized westward electric fields result in local accumulation of ionospheric electrons and ions, which produce local electrostatic potentials in the auroral ionosphere. Field-aligned electric fields are developed to extract excess charges from the ionosphere. This process is essential to the equipotential equilibrium of the auroral ionosphere. Cold electrons and ions that evaporate from the auroral ionosphere by ionospheric injection tend to generate electrostatic parallel potential below an altitude of 10 000 km. This is a result of charge separation along the mirror fields introduced by the evaporated electrons and ions moving earthward in phase space.


2021 ◽  
Author(s):  
Reham Elhawary ◽  
Karl Laundal ◽  
Jone Reistad ◽  
Anders Ohma ◽  
Spencer Hatch ◽  
...  

<p>Substorm onset location varies over a range of magnetic local time (MLT) and magnetic latitudes (MLat). It is well known that about 5% of the variation in onset MLT can be explained by variations in interplanetary magnetic field orientation and dipole tilt angle. Both parameters introduce an azimuthal component in the magnetic field in the magnetosphere such that the projection of the onset MLT in the ionosphere is shifted. The MLT of the onset near the magnetopsheric equatorial plane is even less predictable. Recent studies have suggested that gradients in the ionospheric Hall conductance lead to a duskward shift of tail dynamics, which could also influence the location of substorm onset. Our goal is to test these ideas by quantifying the dependence of the spatial variation of the onset location on external and internal conditions. We focus on the correlation between the substorm onset location with conditions prior to the onset, such as the interplanetary magnetic field By component, dipole tilt angle, and estimates of the Hall conductance. Linear regression analysis is used to determine the substorm onset location dependence on the proposed variables.</p>


2021 ◽  
Author(s):  
Masatoshi Yamauchi ◽  
Magnar Johnsen ◽  
Shin-Ichi Othani ◽  
Dmitry Sormakov

<p>Solar flares are known to enhance the ionospheric electron density and thus influence the electric currents in the D- and E-region.  The geomagnetic disturbance caused by this current system is called a "crochet" or "SFE (solar flare effect)".  Crochets are observed at dayside low-latitudes with a peak near the subsolar region ("subsolar crochet"), in the nightside high-latitude auroral region with a peak where the geomagnetic disturbance pre-exists during solar illumination ("auroral crochet"), and in the cusp ("cusp crochet").  In addition, we recently found a new type of crochet on the dayside ionospheric current at high latitudes (European sector 70-75 geographic latitude/67-72 geomagnetic latitude) independent from the other crochets.  The new crochet is much more intense and longer in duration than the subsolar crochet and is detected even in AU index for about half the >X2 flares despite the unfavorable latitudinal coverage of the AE stations (~65 geomagnetic latitude) to detect this new crochet (Yamauchi et al., 2020).  </p><p>The signature is sometime s seen in AL, causing the crochet signature convoluting with substorms.  From a theoretical viewpoint, X-flares that enhances the ionospheric conductivity may influence the substorm activity, like the auroral crochet.  To understand the substorm-crochet relation in the dayside, we examined SuperMAG data for cases when the onset of the substorm-like AL (SML) behavior coincides with the crochet.  We commonly found a large counter-clockwise ∆B vortex centered at 13-15 LT, causing an AU peak during late afternoon and an AL peak near noon at higher latitudes than the high-latitude crochet.  In addition, we could recognize a clockwise ∆B vortex in the prenoon sector, causing another poleward ∆B, but this signature is not as clear as the afternoon vortex.  With such strong vortex features, it becomes similar to substorms except for its local time.  In some cases, the vortex expends to the nightside sector, where and when nightside onset starts, suggesting triggering of onset.  Thus, the crochet may behave like pseudo-onset at different latitude than midnight substorms, and may even trigger substorm onset.</p>


2021 ◽  
Vol 126 (2) ◽  
Author(s):  
Larry R. Lyons ◽  
Jiang Liu ◽  
Yukitoshi Nishimura ◽  
Chih‐Ping Wang ◽  
Ashton S. Reimer ◽  
...  

Author(s):  
Larry R. Lyons ◽  
Jiang Liu ◽  
Yukitoshi Nishimura ◽  
Ashton S. Reimer ◽  
William A. Bristow ◽  
...  

2021 ◽  
Vol 5 (3) ◽  
pp. 239-250
Author(s):  
SuPing Duan ◽  
◽  
Chi Wang ◽  
Weining William Liu ◽  
ZhaoHai He ◽  
...  
Keyword(s):  

Author(s):  
T. Tanaka ◽  
Y. Ebihara ◽  
M. Watanabe ◽  
M. Den ◽  
S. Fujita ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document