auroral emissions
Recently Published Documents


TOTAL DOCUMENTS

131
(FIVE YEARS 35)

H-INDEX

25
(FIVE YEARS 2)

Author(s):  
Thomas Greathouse ◽  
Randy Gladstone ◽  
Maarten Versteeg ◽  
Vincent Hue ◽  
Joshua Kammer ◽  
...  

Author(s):  
N. Achilleos ◽  
L. C. Ray ◽  
J. N. Yates

The process of magnetosphere-ionosphere coupling involves the transport of vast quantities of energy and momentum between a magnetized planet and its space environment, or magnetosphere. This transport involves extended, global sheets of electrical current, which flows along magnetic field lines. Some of the charged particles, which carry this current rain down onto the planet’s upper atmosphere and excite aurorae–beautiful displays of light close to the magnetic poles, which are an important signature of the physics of the coupling process. The Earth, Jupiter, and Saturn all have magnetospheres, but the detailed physical origin of their auroral emissions differs from planet to planet. The Earth’s aurora is principally driven by the interaction of its magnetosphere with the upstream solar wind—a flow of plasma continually emanating from the Sun. This interaction imposes a particular pattern of flow on the plasma within the magnetosphere, which in turn determines the morphology and intensity of the currents and aurorae. Jupiter, on the other hand, is a giant rapid rotator, whose main auroral oval is thought to arise from the transport of angular momentum between the upper atmosphere and the rotating, disc-like plasma in the magnetosphere. Saturn exhibits auroral behavior consistent with a solar wind–related mechanism, but there is also regular variability in Saturn’s auroral emissions, which is consistent with rotating current systems that transport energy between the magnetospheric plasma and localized vortices of flow in the upper atmosphere/ionosphere.


Nature ◽  
2021 ◽  
Vol 596 (7870) ◽  
pp. 54-57
Author(s):  
J. O’Donoghue ◽  
L. Moore ◽  
T. Bhakyapaibul ◽  
H. Melin ◽  
T. Stallard ◽  
...  

AbstractJupiter’s upper atmosphere is considerably hotter than expected from the amount of sunlight that it receives1–3. Processes that couple the magnetosphere to the atmosphere give rise to intense auroral emissions and enormous deposition of energy in the magnetic polar regions, so it has been presumed that redistribution of this energy could heat the rest of the planet4–6. Instead, most thermospheric global circulation models demonstrate that auroral energy is trapped at high latitudes by the strong winds on this rapidly rotating planet3,5,7–10. Consequently, other possible heat sources have continued to be studied, such as heating by gravity waves and acoustic waves emanating from the lower atmosphere2,11–13. Each mechanism would imprint a unique signature on the global Jovian temperature gradients, thus revealing the dominant heat source, but a lack of planet-wide, high-resolution data has meant that these gradients have not been determined. Here we report infrared spectroscopy of Jupiter with a spatial resolution of 2 degrees in longitude and latitude, extending from pole to equator. We find that temperatures decrease steadily from the auroral polar regions to the equator. Furthermore, during a period of enhanced activity possibly driven by a solar wind compression, a high-temperature planetary-scale structure was observed that may be propagating from the aurora. These observations indicate that Jupiter’s upper atmosphere is predominantly heated by the redistribution of auroral energy.


2021 ◽  
Author(s):  
Laurent Lamy ◽  
Lucas Colomban ◽  
Philippe Zarka

<p>The prominent component of Jovian decametric (auroral) emissions is induced by Io. Io decametric emissions (Io-DAM) have thus been monitored on a regular basis by Earth- or Space-based radio observatories for several decades. They display a typical arc-shaped structure in the time-frequency plane which results from the motion of the Io flux tube relative to the observer convolved with the anisotropic radio emission cone. Remote determination of the Io-DAM beaming pattern was used to check the emission conditions at the source (e.g. Queinnec & Zarka, 1998). It has been done at several occasions using various models of magnetic field/lead angles which introduce significant uncertainties. Nevertheless, Io-DAM arcs were shown to be consistent with oblique emissions triggered by the Cyclotron maser Instability from loss-cone electron distributions of a few keVs (Hess et al., 2008). The CMI validity for Jovian DAM and the prominence of loss cone electron distributions has been later confirmed by Juno in situ measurements (e.g. Louarn et al, 2017). In this study, we took advantage of simultaneous radio/UV or bi-point stereoscopic radio measurements provided by Juno/Waves, the Nançay Decameter Array and the Hubble Space Telescope to unambiguously derive the beaming pattern of several Io-DAM arcs and compare it with theoretical expectations. We then assess the energy of CMI-unstable auroral electrons at the source and discuss our results at the light of similar independent studies reaching different conclusions.</p>


2021 ◽  
Author(s):  
Sariah Al Saati ◽  
Noé Clément ◽  
Michel Blanc ◽  
Yuxian Wang ◽  
Nicolas André ◽  
...  

<p class="western" lang="en-US" align="justify">The dynamics of the Jovian magnetosphere is controlled by the complex interplay of the planet’s fast rotation, its solar-wind interaction and its main plasma source at the Io torus. At the ionospheric level, these MIT coupling processes can be characterized by a set of key parameters which include ionospheric conductances, currents and electric fields, exchanges of particles along field lines and auroral emissions. Knowledge of these key parameters in turn makes it possible to estimate the net deposition/extraction of momentum and energy into/out of the Jovian upper atmosphere. In this talk we will extend to the first thirty Juno science orbits the method described in Wang et al. (JGR 2021, under review) which combines Juno multi-instrument data (MAG, JADE, JEDI, UVS, JIRAM and WAVES), adequate modelling tools and data bases to retrieve these key parameters along the Juno magnetic footprint and across the north and south auroral ovals. We will present preliminary distributions of conductances, electric currents and electric fields obtained from these orbits and will compare them with model predictions.</p>


2021 ◽  
Author(s):  
Noé Clément ◽  
Sariah Al Saati ◽  
Michel Blanc ◽  
Yuxian Wang ◽  
Nicolas André ◽  
...  

<p class="western" lang="en-US" align="justify">The dynamics of the Kronian magnetosphere is controlled by the complex interplay of the planet’s fast rotation, its solar-wind interaction and its main plasma sources at Enceladus and other moons. At the ionospheric level, these MIT coupling processes can be characterized by a set of key parameters which include ionospheric conductances, currents and electric fields, exchanges of particles along field lines and auroral emissions. Knowledge of these key parameters in turn makes it possible to estimate the net deposition/extraction of momentum and energy into/out of the Kronian upper atmosphere. In this talk we will apply to Cassini high-inclination, F-ring and Grand Finale orbits the method developed and tested by Wang et al. (JGR 2021, under review) for Juno studies. We will combine Cassini multi-instrument data (MAG, CAPS, MIMI, UVIS and RPWS) with adequate modelling tools and data bases to retrieve these key parameters along the Cassini magnetic footprint and across the north and south auroral ovals. We will present preliminary distributions of conductances, electric currents and electric fields obtained from these orbits and will compare them with model predictions.</p>


2021 ◽  
Author(s):  
George Clark ◽  
Chris Paranicas ◽  
Joseph Westlake ◽  
Barry Mauk ◽  
Peter Kollmann ◽  
...  

<p>Remote observations clearly show that soft X-ray emissions at Jupiter concentrate poleward of the main oval forming a so-called “hot spot” (Gladstone et al., 2002; Dunn et al., 2016). One hypothesis proposes that the X-rays are likely produced from precipitating energetic heavy ions that become fully stripped via interactions in Jupiter’s upper atmosphere; however, the details regarding the ion source and acceleration mechanism(s) of the soft X-ray (~2 keV) component is still an active area of research. NASA’s Juno mission – a Jupiter polar orbiting spacecraft – is shedding light onto this mystery with in situ observations of the energetic particle environment over the poles, and coordinated observing campaigns with Earth-orbiting X-ray observatories, e.g., Chandra and XMM-Newton. Recent ideas supported by Juno data include: 1) pitch angle scattering of energetic ions via electromagnetic ion cyclotron waves in the outer magnetosphere (Yao et al., 2021); and 2) acceleration of ions to several MeV over Jupiter’s poles via field-aligned electric potentials (Clark et al., 2017; Haggerty et al., 2017; Clark et al., 2020; Yao et al., 2021). New techniques have been recently developed to push the capabilities of Juno’s Jupiter Energetic particle Detector Instrument (JEDI) to measure the > 10 MeV ions (Westlake et al., 2019; Kollmann et al., 2020). In this presentation, we utilize these techniques to characterize the precipitating fluxes of > 10 MeV ions over Jupiter’s polar region with the goal of better understanding the sources of Jupiter’s X-ray auroral emissions.</p>


2021 ◽  
Author(s):  
Jamey Szalay ◽  
Frederic Allegrini ◽  
Fran Bagenal ◽  
Scott Bolton ◽  
Bertrand Bonfond ◽  
...  

<p>Jupiter’s aurora is complex and dynamic, with a large number of distinct auroral features and regions generated by multiple phenomena. Of these features, Io’s auroral signature is one of the most persistent and identifiable aurora, with a rich observational history spanning decades of remote observations. Since Juno arrived at Jupiter, providing in-situ transits through flux tubes directly connected to Io’s auroral emissions, its diverse set of instruments have revealed an even more complex and dynamic picture of Io’s auroral interaction. In this presentation, we report on Juno observations of precipitating electron fluxes connected to 18 crossings of Io’s footprint tail aurora, over altitudes of 0.15 to 1.1 Jovian radii (R<sub>J</sub>). We will highlight how the strength of precipitating electron fluxes is dominantly organized by “Io-Alfvén tail distance”, the angle along Io’s orbit between Io and an Alfvén wave trajectory connected to the tail aurora. We will discuss how these fluxes were best fit with an exponential as a function of down-tail extent with an e-folding distance of 21˚, the acceleration region altitude likely increases down-tail, and most of the parallel electron acceleration sustaining the tail aurora occurs above 1 R<sub>J</sub> in altitude. Finally, we will highlight how Juno has likely transited Io’s Main Alfvén Wing fluxtube, observing a characteristically distinct signature with precipitating electron fluxes ~600 mW/m<sup>2</sup> and an acceleration region extending as low as 0.4 R<sub>J</sub> in altitude.</p>


Author(s):  
N. Thomas

AbstractIo is the most volcanically-active object in the solar system. The moon ejects a tonne per second of sulphur-rich gases that fill the vast magnetosphere of Jupiter and drives million-amp electrical currents that excite strong auroral emissions. We present the case for including a detailed study of Io within Voyage 2050 either as a standalone mission or as a contribution to a NASA New Frontiers mission, possibly within a Solar System theme centred around current evolutionary or dynamical processes. A comprehensive investigation will provide answers to many outstanding questions and will simultaneously provide information on processes that have formed the landscapes of several other objects in the past. A mission investigating Io will also study processes that have shaped the Earth, Moon, terrestrial planets, outer planet moons, and potentially extrasolar planets. The aim would be simple – tracing the mass and energy flows in the Io-Jupiter system.


Sign in / Sign up

Export Citation Format

Share Document