scholarly journals Polarization properties of standing shear Alfvén waves in non-axisymmetric background magnetic fields

2007 ◽  
Vol 25 (3) ◽  
pp. 815-822 ◽  
Author(s):  
K. Kabin ◽  
R. Rankin ◽  
I. R. Mann ◽  
A. W. Degeling ◽  
R. Marchand

Abstract. In this paper we present results concerning periods and polarizations of cold plasma ultra-low frequency (ULF) guided Alfvén waves in a non-axisymmetric geomagnetic field. The background geomagnetic field is approximated by a compressed dipole for which we propose a simple description in terms of Euler potentials. This study is motivated by the problem of outer-radiation belt electron acceleration by ULF waves, for which the polarization of the wave is of paramount importance. We consider an approximation appropriate to decoupled Alfvénic waves and find that the polarization of the waves can change significantly with local time. Therefore, the ULF wave's contribution to the MeV electron energization process can be localized in space.

2015 ◽  
Vol 33 (11) ◽  
pp. 1431-1442 ◽  
Author(s):  
M. Georgiou ◽  
I. A. Daglis ◽  
E. Zesta ◽  
G. Balasis ◽  
I. R. Mann ◽  
...  

Abstract. Geospace magnetic storms, driven by the solar wind, are associated with increases or decreases in the fluxes of relativistic electrons in the outer radiation belt. We examine the response of relativistic electrons to four intense magnetic storms, during which the minimum of the Dst index ranged from −105 to −387 nT, and compare these with concurrent observations of ultra-low-frequency (ULF) waves from the trans-Scandinavian IMAGE magnetometer network and stations from multiple magnetometer arrays available through the worldwide SuperMAG collaboration. The latitudinal and global distribution of Pc5 wave power is examined to determine how deep into the magnetosphere these waves penetrate. We then investigate the role of Pc5 wave activity deep in the magnetosphere in enhancements of radiation belt electrons population observed in the recovery phase of the magnetic storms. We show that, during magnetic storms characterized by increased post-storm electron fluxes as compared to their pre-storm values, the earthward shift of peak and inner boundary of the outer electron radiation belt follows the Pc5 wave activity, reaching L shells as low as 3–4. In contrast, the one magnetic storm characterized by irreversible loss of electrons was related to limited Pc5 wave activity that was not intensified at low L shells. These observations demonstrate that enhanced Pc5 ULF wave activity penetrating deep into the magnetosphere during the main and recovery phase of magnetic storms can, for the cases examined, distinguish storms that resulted in increases in relativistic electron fluxes in the outer radiation belts from those that did not.


2002 ◽  
Vol 14 (1) ◽  
pp. 93-103 ◽  
Author(s):  
D.A. Neudegg ◽  
B.J. Fraser ◽  
F.W. Menk ◽  
G.B. Burns ◽  
R.J. Morris ◽  
...  

Energy from the outer regions of the magnetosphere may be transferred to the polar ionosphere by plasma waves. A magnetometer array operated during the Antarctic winter observed Ultra-Low-Frequency (ULF) plasma waves in the Pc 1–2 (0.1–10.0 Hz) frequency range, propagating parallel to the surface of the Earth in a waveguide or duct centred at ∼300 km altitude in the ionosphere. These compressional fast mode plasma waves most likely originated in the outer magnetosphere as shear mode plasma waves guided along the geomagnetic field. The region of origin in the magnetosphere for the waves is not certain as several widely spaced volumes map along geomagnetic field lines to a relatively close ensemble in the polar ionosphere. This paper compares the direction of propagation for the waves with signatures of magnetospheric regions geomagnetically projecting onto the ionosphere. Regions such as the polar cusp, low latitude boundary layer and mantle were observed by DMSP spacecraft and a SuperDARN high-frequency radar. The most likely region in the polar ionosphere for the fast mode waves to have originated from is equatorwards of the polar cusp, suggesting the field guided waves originated just inside the magnetopause. A case is made for association of the observed Pc1-2 ULF waves with post-noon, field-aligned-current systems driven by reconnection of the solar Interplanetary Magnetic Field (IMF) and the geomagnetic field near the magnetopause.


1981 ◽  
Vol 46 (26) ◽  
pp. 1675-1678 ◽  
Author(s):  
W. W. Lee ◽  
M. S. Chance ◽  
H. Okuda

2021 ◽  
Vol 28 (2) ◽  
pp. 022903
Author(s):  
X. Q. Lu ◽  
L. M. Yu ◽  
W. Guo ◽  
K. H. Li

2021 ◽  
Author(s):  
Jasmine Sandhu ◽  
Jonathan Rae ◽  
John Wygant ◽  
Aaron Breneman ◽  
Sheng Tian ◽  
...  

<p>Ultra Low Frequency (ULF) waves drive radial diffusion of radiation belt electrons, where this process contributes to and, at times, dominates energisation, loss, and large scale transport of the outer radiation belt. In this study we quantify the changes and variability in ULF wave power during geomagnetic storms, through a statistical analysis of Van Allen Probes data for the time period spanning 2012 – 2019. The results show that global wave power enhancements occur during the main phase, and continue into the recovery phase of storms. Local time asymmetries show sources of ULF wave power are both external solar wind driving as well as internal sources from coupling with ring current ions and substorms.</p><p>The statistical analysis demonstrates that storm time ULF waves are able to access lower L values compared to pre-storm conditions, with enhancements observed within L = 4. We assess how magnetospheric compressions and cold plasma distributions shape how ULF wave power propagates through the magnetosphere. Results show that the Earthward displacement of the magnetopause is a key factor in the low L enhancements. Furthermore, the presence of plasmaspheric plumes during geomagnetic storms plays a crucial role in trapping ULF wave power, and contributes significantly to large storm time enhancements in ULF wave power.</p><p>The results have clear implications for enhanced radial diffusion of the outer radiation belt during geomagnetic storms. Estimates of storm time radial diffusion coefficients are derived from the ULF wave power observations, and compared to existing empirical models of radial diffusion coefficients. We show that current Kp-parameterised models, such as the Ozeke et al. [2014] model, do not fully capture the large variability in storm time radial diffusion coefficients or the extent of enhancements in the magnetic field diffusion coefficients.</p>


2021 ◽  
Author(s):  
Christopher Lara ◽  
Pablo S. Moya ◽  
Victor Pinto ◽  
Javier Silva ◽  
Beatriz Zenteno

<p>The inner magnetosphere is a very important region to study, as with satellite-based communications increasing day after day, possible disruptions are especially relevant due to the possible consequences in our daily life. It is becoming very important to know how the radiation belts behave, especially during strong geomagnetic activity. The radiation belts response to geomagnetic storms and solar wind conditions is still not fully understood, as relativistic electron fluxes in the outer radiation belt can be depleted, enhanced or not affected following intense activity. Different studies show how these results vary in the face of different events. As one of the main mechanisms affecting the dynamics of the radiation belt are wave-particle interactions between relativistic electrons and ULF waves. In this work we perform a statistical study of the relationship between ULF wave power and relativistic electron fluxes in the outer radiation belt during several geomagnetic storms, by using magnetic field and particle fluxes data measured by the Van Allen Probes between 2012 and 2017. We evaluate the correlation between the changes in flux and the cumulative effect of ULF wave activity during the main and recovery phases of the storms for different position in the outer radiation belt and energy channels. Our results show that there is a good correlation between the presence of ULF waves and the changes in flux during the recovery phase of the storm and that correlations vary as a function of energy. Also, we can see in detail how the ULF power change for the electron flux at different L-shell We expect these results to be relevant for the understanding of the relative role of ULF waves in the enhancements and depletions of energetic electrons in the radiation belts for condition described.</p>


2011 ◽  
Vol 53 (2) ◽  
pp. 025009 ◽  
Author(s):  
Alessandro Biancalani ◽  
Liu Chen ◽  
Francesco Pegoraro ◽  
Fulvio Zonca

1985 ◽  
Vol 161 (1) ◽  
pp. 21-47 ◽  
Author(s):  
C.Z Cheng ◽  
Liu Chen ◽  
M.S Chance

2019 ◽  
Vol 37 (4) ◽  
pp. 719-732
Author(s):  
Alexei V. Dmitriev

Abstract. Within the last two solar cycles (from 2001 to 2018), the location of the outer radiation belt (ORB) was determined using NOAA/Polar-orbiting Operational Environmental Satellite (POES) observations of energetic electrons with energies above 30 keV. It was found that the ORB was shifted a little (∼1∘) in the European and North American sectors, while in the Siberian sector the ORB was displaced equatorward by more than 3∘. The displacements corresponded qualitatively to the change in the geomagnetic field predicted by the IGRF-12 model. However, in the Siberian sector, the model has a tendency to underestimate the equatorward shift of the ORB. The shift became prominent after 2012, which might have been related to a geomagnetic “jerk” that occurred in 2012–2013. The displacement of the ORB to lower latitudes in the Siberian sector can contribute to an increase in the occurrence rate of midlatitude auroras observed in the Eastern Hemisphere.


Sign in / Sign up

Export Citation Format

Share Document