scholarly journals The study of intermolecular energy transfers in electronic energy quenching for molecular collisions N<sub>2</sub>-N<sub>2</sub>, N<sub>2</sub>-O<sub>2</sub>, O<sub>2</sub>-O<sub>2</sub>

2008 ◽  
Vol 26 (5) ◽  
pp. 1149-1157 ◽  
Author(s):  
A. S. Kirillov

Abstract. Contributions of intermolecular electron energy transfers in the electronic quenching are calculated for molecular collisions N2(A3Σu+, W3Δu)+N2(X1Σg+, v=0), N2(A3Σu+)+N2(X1Σg+, v≥0), N2(A3Σu+)+O2(X3Σg−, v=0–2), O2(a1Δg, b1Σg+)+O2(X3Σg−, v=0–2). The calculation has allowed one to estimate the product branching ratios. It is shown that there is a dependence of the calculated rate coefficients on the vibrational excitation of N2(X1Σg+) and O2(X3Σg−) molecules. In many cases, the calculated rate coefficients have a good agreement with available experimental data.

2020 ◽  
Vol 73 (8) ◽  
pp. 705
Author(s):  
Oisin J. Shiels ◽  
P. D. Kelly ◽  
Stephen J. Blanksby ◽  
Gabriel da Silva ◽  
Adam J. Trevitt

Reactions of three protonated benzonitrile radical cations with ethylene are investigated. Product branching ratios and reaction kinetics, measured using ion-trap mass spectrometry, are reported and mechanisms are developed with support from quantum chemical calculations. Reactions proceed via pre-reactive van der Waals complexes with no energy barrier (above the reactant energy) and form radical addition and addition–elimination product ions. Rate coefficients are 4-dehydrobenzonitrilium: 1.72±0.01×10−11 cm3 molecule−1 s−1, 3-dehydrobenzonitrilium: 1.85±0.01×10−11 cm3 molecule−1 s−1, and 2-dehydrobenzonitrilium: 5.96±0.06×10−11 cm3 molecule−1 s−1 (with±50% absolute uncertainty). A ring-closure mechanism involving the protonated nitrile substituent is proposed for the 2-dehydrobenzonitrilium case and suggests favourable formation of the protonated indenimine cation.


2013 ◽  
Vol 117 (32) ◽  
pp. 7256-7266 ◽  
Author(s):  
Jennifer E. Mann ◽  
Zhen Xie ◽  
John D. Savee ◽  
Joel M. Bowman ◽  
Robert E. Continetti

2002 ◽  
Vol 117 (15) ◽  
pp. 7055-7067 ◽  
Author(s):  
Harold W. Schranz ◽  
Sean C. Smith ◽  
Alexander M. Mebel ◽  
Sheng H. Lin

2019 ◽  
Vol 490 (1) ◽  
pp. 1325-1331 ◽  
Author(s):  
M A Ayouz ◽  
C H Yuen ◽  
N Balucani ◽  
C Ceccarelli ◽  
I F Schneider ◽  
...  

ABSTRACT Formamide is a potentially important molecule in the context of pre-biotic chemistry, since reactions involving it can lead to precursors of genetic and metabolic molecules. Being abundant in cometary material and in star-forming regions, the formation and destruction routes of interstellar formamide have been the focus of several studies. In this work, we focus on the electron recombination of protonated formamide, an important step of its destruction routes, by performing rigorous ab initio calculations of this process. We found that our values are in good agreement with previous qualitative estimates of the global rate coefficients. On the contrary, we propose a substantial revision of the products and branching ratios. Finally, we justify and emphasize the importance of carrying out similar theoretical calculations on the largest possible number of complex species of astrochemical interest.


2016 ◽  
Vol 16 (6) ◽  
pp. 4023-4042 ◽  
Author(s):  
Frank A. F. Winiberg ◽  
Terry J. Dillon ◽  
Stephanie C. Orr ◽  
Christoph B. M Groß ◽  
Iustinian Bejan ◽  
...  

Abstract. The reaction CH3C(O)O2 + HO2  →  CH3C(O)OOH + O2 (Reaction R5a), CH3C(O)OH + O3 (Reaction R5b), CH3 + CO2 + OH + O2 (Reaction R5c) was studied in a series of experiments conducted at 1000 mbar and (293 ± 2) K in the HIRAC simulation chamber. For the first time, products, (CH3C(O)OOH, CH3C(O)OH, O3 and OH) from all three branching pathways of the reaction have been detected directly and simultaneously. Measurements of radical precursors (CH3OH, CH3CHO), HO2 and some secondary products HCHO and HCOOH further constrained the system. Fitting a comprehensive model to the experimental data, obtained over a range of conditions, determined the branching ratios α(R5a)  =  0.37 ± 0.10, α(R5b) =  0.12 ± 0.04 and α(R5c) =  0.51 ± 0.12 (errors at 2σ level). Improved measurement/model agreement was achieved using k(R5)  =  (2.4 ± 0.4)  ×  10−11 cm3 molecule−1 s−1, which is within the large uncertainty of the current IUPAC and JPL recommended rate coefficients for the title reaction. The rate coefficient and branching ratios are in good agreement with a recent study performed by Groß et al. (2014b); taken together, these two studies show that the rate of OH regeneration through Reaction (R5) is more rapid than previously thought. GEOS-Chem has been used to assess the implications of the revised rate coefficients and branching ratios; the modelling shows an enhancement of up to 5 % in OH concentrations in tropical rainforest areas and increases of up to 10 % at altitudes of 6–8 km above the equator, compared to calculations based on the IUPAC recommended rate coefficient and yield. The enhanced rate of acetylperoxy consumption significantly reduces PAN in remote regions (up to 30 %) with commensurate reductions in background NOx.


2017 ◽  
Vol 19 (26) ◽  
pp. 17396-17403 ◽  
Author(s):  
Hongwei Song ◽  
Anyang Li ◽  
Minghui Yang ◽  
Hua Guo

Good agreement is found between theoretical and experimental product branching ratios of the H2O+ + HD reaction.


2020 ◽  
Vol 22 (25) ◽  
pp. 14246-14254
Author(s):  
Maiara Oliveira Passos ◽  
Igor Araujo Lins ◽  
Tiago Vinicius Alves

Thermal rate constants for the hydrogen abstraction reactions of (E)-2-butenal by hydrogen atoms were calculated, for the first time, using the multipath canonical variational theory with small-curvature tunneling (MP-CVT/SCT).


2015 ◽  
Vol 35 (2) ◽  
pp. 1861-1869 ◽  
Author(s):  
V.V. Kislov ◽  
R.I. Singh ◽  
D.E. Edwards ◽  
A.M. Mebel ◽  
M. Frenklach

2015 ◽  
Vol 15 (20) ◽  
pp. 28815-28866
Author(s):  
F. A. F. Winiberg ◽  
T. J. Dillon ◽  
S. C. Orr ◽  
C. B. M Groß ◽  
I. Bejan ◽  
...  

Abstract. The reaction CH3C(O)O2 + HO2 &amp;rightarrow; CH3C(O)OOH + O2 (Reaction R5a), CH3C(O)OH + O3 (Reaction R5b), CH3 + CO2 + OH + O2 (Reaction R5c) was studied in a series of experiments conducted at 1000 mbar and (293 ± 2) K in the HIRAC simulation chamber. For the first time, products, (CH3C(O)OOH, CH3C(O)OH, O3 and OH) from all three branching pathways of the reaction have been detected directly and simultaneously. Measurements of radical precursors (CH3OH, CH3CHO), HO2 and some secondary products HCHO and HCOOH further constrained the system. Fitting a comprehensive model to the experimental data, obtained over a range of conditions, determined the branching ratios α(R5a) = 0.37 ± 0.10, α(R5b) = 0.12 ± 0.04 and α(R5c) = 0.51 ± 0.12 (errors at 2σ level). Improved measurement/model agreement was achieved using k(R5) = (2.4 ± 0.4) × 10-11 cm3 molecule-1 s-1, which is within the large uncertainty of the current IUPAC and JPL recommended rate coefficients for the title reaction. The rate coefficient and branching ratios are in good agreement with a recent study performed by Groß et al. (2014b); taken together, these two studies show that the rate of OH regeneration through Reaction (R5) is more rapid than previously thought. GEOS-Chem has been used to assess the implications of the revised rate coefficients and branching ratios; the modelling shows an enhancement of up to 5 % in OH concentrations in tropical rainforest areas and increases of up to 10 % at altitudes of 6–8 km above the equator, compared to calculations based on the IUPAC recommended rate coefficient and yield. The enhanced rate of acetylperoxy consumption significantly reduces PAN in remote regions (up to 30 %) with commensurate reductions in background NOx.


1997 ◽  
Vol 62 (2) ◽  
pp. 154-171 ◽  
Author(s):  
Jan Vojtík ◽  
Richard Kotal

An analysis of the degree of convergence of theoretical pictures of the dynamics of the autoionization event He(23S)-D2(v" = 0) -> [He...D2+(v')] + e is presented for a number of batches of Monte Carlo calculations differing in the number of the trajectories run. The treatment of the dynamics consists in 2D classical trajectory calculations based on static characteristics which include a quantum mechanical treatment of the perturbed D2(v" = 0) and D2+(v') vibrational motion. The vibrational populations are dynamical averages over the local widths of the He(23S)-D2(v" = 0) state with respect to autoionization to D2+(...He) in its v'th vibrational level and the Penning electron energies are related to the local differences between the energies of the corresponding perturbed D2(v" = 0)(...He*) and D2+(v')(...He) vibrational states. Special attention is paid to the connection between the requirements on the degree of convergence of the classical trajectory picture of the event and the purpose of the calculations. Information is obtained regarding a scale of the trajectory calculations required for physically sensible applications of the model to an interpretation of different type of experiments on the system: total ionization cross section measurements, Penning ionization electron spectra, subsequent 3D classical trajectory calculations of branching ratios of the products of the postionization collision process, and interpretation of electron ion coincidence measurements of the product branching ratios for individual vibrational levels of the nascent Penning ion.


Sign in / Sign up

Export Citation Format

Share Document