scholarly journals Magnetic flux transfer in the 5 April 2010 Galaxy 15 substorm: an unprecedented observation

2011 ◽  
Vol 29 (3) ◽  
pp. 619-622 ◽  
Author(s):  
M. Connors ◽  
C. T. Russell ◽  
V. Angelopoulos

Abstract. At approximately 08:25 UT on 5 April 2010, a CME-driven shock compressed Earth's magnetosphere and applied about 15 nT of southward IMF for nearly an hour. A substorm growth phase and localized dipolarization at 08:47 UT were followed by large dipolarizations at 09:03 UT and 09:08 UT, observed by GOES West (11) in the midnight sector, and by three THEMIS spacecraft near X=−11, Y=−2 RE. A large electric field at the THEMIS spacecraft indicates so much flux transfer to the inner magnetosphere that "overdipolarization" took place at GOES 11. This transfer is consistent with the ground and space magnetic signature of the substorm current wedge. Significant particle injections were also observed. The ensemble of extreme geophysical conditions, never previously observed, is consistent with the Near-Earth Neutral Line interpretation of substorms, and subjected the Galaxy 15 geosynchronous satellite to space weather conditions which appear to have induced a major operational anomaly.

Space Weather ◽  
2015 ◽  
Vol 13 (8) ◽  
pp. 484-502 ◽  
Author(s):  
T. M. Loto'aniu ◽  
H. J. Singer ◽  
J. V. Rodriguez ◽  
J. Green ◽  
W. Denig ◽  
...  

2004 ◽  
Vol 22 (6) ◽  
pp. 2107-2113 ◽  
Author(s):  
N. P. Dmitrieva ◽  
V. A. Sergeev ◽  
M. A. Shukhtina

Abstract. We study average characteristics of plasma sheet convection in the middle tail during different magnetospheric states (Steady Magnetospheric Convection, SMC, and substorms) using simultaneous magnetotail (Geotail, 15-35 RE downtail) and solar wind (Wind spacecraft) observations during 3.5 years. (1) A large data set allowed us to obtain the average values of the plasma sheet magnetic flux transfer rate (Ey and directly compare it with the dayside transfer rate (Emod for different magnetospheric states. The results confirm the magnetic flux imbalance model suggested by Russell and McPherron (1973), namely: during SMC periods the day-to-night flux transport rate equals the global Earthward plasma sheet convection; during the substorm growth phase the plasma sheet convection is suppressed on the average by 40%, whereas during the substorm expansion phase it twice exceeds the day-to-night global flux transfer rate. (2) Different types of substorms were revealed. About 1/3 of all substorms considered displayed very weak growth in the tail lobe magnetic field before the onset. For these events the plasma sheet transport was found to be in a balance with the day-to-night flux transfer, as in the SMC events. However, the lobe magnetic field value in these cases was as large as that in the substorms with a classic growth phase just before the onset (both values exceed the average level of the lobe field during the SMC). Also, in both groups similar configurational changes (magnetic field stretching and plasma sheet thinning) were observed before the substorm onset. (3) Superimposed epoch analysis showed that the plasma sheet during the late substorm recovery phase has the characteristics similar to those found during SMC events, the SMC could be a natural magnetospheric state following the substorm.


1989 ◽  
Vol 16 (1) ◽  
pp. 33-36 ◽  
Author(s):  
M. Lockwood ◽  
P. E. Sandholt ◽  
S. W. H. Cowley

1982 ◽  
Vol 87 (A4) ◽  
pp. 2159 ◽  
Author(s):  
G. Paschmann ◽  
G. Haerendel ◽  
I. Papamastorakis ◽  
N. Sckopke ◽  
S. J. Bame ◽  
...  

2019 ◽  
pp. 223-228
Author(s):  
Dmitry Dergachev ◽  
Marina Larkina ◽  
Valerii Petrov ◽  
Mikhail Pankin

Исследования интродуцированного японского сорта винограда Кёхо выполнены в нестабильных погодных условиях умеренно континентального климата юга России, в Черноморской зоне виноградарства Краснодарского края в условиях температурного и водного стрессов 2018 года. В период активной вегетации (май - август) сумма активных температур воздуха была на 197 °С больше среднемноголетней нормы, количество атмосферных осадков было меньше нормы в 3,7 раза и составило 47 мм. В аномальных погодных условиях интродуцированный сорт винограда Кёхо показал высокую адаптивность к нестабильным погодным условиям в форме активного роста и прохождения фенологических циклов. При остром дефиците атмосферных осадков и повышенной инсоляции продолжительность вегетации винограда Кёхо от распускания почек до полной физиологической зрелости ягод была равна 119 дней, на 5 дней меньше, чем у контрольного сорта Бригантина и на 3 дня меньше, чем в среднем по большой группе столовых сортов разного эколого-географического происхождения, расположенных рядом на Анапской ампелографической коллекции. Начало фазы распускания почек, роста побегов и соцветий наблюдалось 15 апреля, у контрольного сорта на 4 дня раньше, у сортов ампелографической коллекции на 6 дней позже. Продолжительность этой фазы вегетации у изучаемого сорта составила 54 дня, больше на 11 дней чем у контрольного сорта и на 9 дней чем у столовых сортов ампелоколлекции. Цветение у сорта Кёхо начиналось 7 июня, на 15 дней позже чем у контрольного сорта Бригантина и на 3 дня чем у группы столовых сортов на ампелоколлекции. Продолжительность периода от начала цветения до начала созревания ягод у сорта Кёхо в экологических условиях 2018 года составила 50 дней, что на 4 дня короче, чем у контрольного сорта и на 3 дня короче, чем у сортов на ампелоколлекции. Интенсивность роста ягод была более высокой по сравнению с контролем и группой столовых сортов в ампелоколлекции. Полная физиологическая зрелость ягод у изучаемого сорта наступила 11 августа, практически одновременно с контролем - 12 августа.The study of introduced Japanese grapevine cultivar ‘Kёho’ was carried out in unstable weather conditions of moderately continental climate of the South of Russia, in the Black Sea viticultural zone of the Krasnodar Krai under temperature and water stress of 2018. During the active vegetation season (May - August), the accumulated effective temperatures made 197 ° С above the long-time average annual, the amount of precipitation was 3.7 times less than normal, and amounted to 47 mm. Under the effect of abnormal weather conditions, the introduced grapevine cultivar ‘Kёho’ demonstrated high adaptability to erratic weather conditions during the active growth phase and passage of phenological cycles. Under acute atmospheric precipitation deficit and increased insolation, the duration of ‘Kёho’ grapevine vegetation from bud break to full physiological berry ripeness made 119 days, which is 5 days less as compared to control cultivar ‘Brigantina’ and 3 days less than the average for a large group of table cultivars of various ecological and geographical origin, located in the nearby Anapa ampelographic collection. The start of the bud break, shoot and inflorescence growth phase was observed on April 15; it happened 4 days earlier for the control cultivar, and 6 days later for the cultivars in the ampelographic collection. The duration of this vegetation phase for the studied cultivar was 54 days, which by 11 days exceeded that of the control cultivar and by 9 days that of the table cultivars in the ampelographic collection. The bloom of ‘Kёho’ began on June 7 - 15 days later than that of the control cultivar ‘Brigantina’ and 3 days later as compared to the group of table cultivars in the ampelographic collection. Duration of the early bloom to veraison period of ‘Kёho’ grapes in the ecological conditions of 2018 made 50 days, which was 4 days shorter than that of the control cultivar and 3 days shorter as compared to the cultivars in the ampelographic collection. The berry growth was more intensive as compared to the control and the group of table cultivars in the ampelographic collection. Berries of the studied cultivar reached full physiological ripeness on August 11, almost simultaneously with the control - on August 12.


2020 ◽  
Author(s):  
Alberto Garcia-Rigo ◽  
Benedikt Soja

<p>Multiple space geodetic techniques are capable of measuring effects caused by space weather events. In particular, space weather events can cause ionospheric disturbances correlated with variations in the vertical total electron content (VTEC) or the electron density (Ne) of the ionosphere.</p><p>In this regard and in the context of the new Focus Area on Geodetic Space Weather Research within IAG’s GGOS (International Association of Geodesy; Global Geodetic Observing System), the Joint Working Group 3 on Improved understanding of space weather events and their monitoring by satellite missions has been created as part of IAG Commission 4, Sub-Commission 4.3 to run for the next four years.</p><p>Within JWG3, we expect investigating different approaches to monitor space weather events using the data from different space geodetic techniques and, in particular, combinations thereof. Simulations will be beneficial to identify the contribution of different techniques and prepare for the analysis of real data. Different strategies for the combination of data will also be investigated, in particular, the weighting of estimates from different techniques in order to increase the performance and reliability of the combined estimates. Furthermore, existing algorithms for the detection and prediction of space weather events will be explored and improved to the extent possible. Furthermore, the geodetic measurement of the ionospheric electron density will be complemented by direct observations from the Sun gathered from existing spacecraft, such as SOHO, ACE, SDO, Parker Solar Probe, among others. The combination and joint evaluation of multiple datasets with the measurements of space geodetic observation techniques (e.g. geodetic VLBI) is still a great challenge. In addition, other indications for solar activity - such as the F10.7 index on solar radio flux, SOLERA as EUV proxy or rate of Global Electron Content (dGEC)-, provide additional opportunities for comparisons and validation.</p><p>Through these investigations, we will identify the key parameters useful to improve real-time/prediction of ionospheric/plasmaspheric VTEC, Ne estimates, as well as ionospheric perturbations, in case of extreme solar weather conditions. In general, we will gain a better understanding of space weather events and their effect on Earth’s atmosphere and near-Earth environment.</p>


Space Weather ◽  
2018 ◽  
Vol 16 (9) ◽  
pp. 1269-1276 ◽  
Author(s):  
Matthias M. Meier ◽  
Kyle Copeland ◽  
Daniel Matthiä ◽  
Christopher J. Mertens ◽  
Kai Schennetten

Sign in / Sign up

Export Citation Format

Share Document