scholarly journals New GGOS JWG3 on Improved understanding of space weather events and their monitoring

Author(s):  
Alberto Garcia-Rigo ◽  
Benedikt Soja

<p>Multiple space geodetic techniques are capable of measuring effects caused by space weather events. In particular, space weather events can cause ionospheric disturbances correlated with variations in the vertical total electron content (VTEC) or the electron density (Ne) of the ionosphere.</p><p>In this regard and in the context of the new Focus Area on Geodetic Space Weather Research within IAG’s GGOS (International Association of Geodesy; Global Geodetic Observing System), the Joint Working Group 3 on Improved understanding of space weather events and their monitoring by satellite missions has been created as part of IAG Commission 4, Sub-Commission 4.3 to run for the next four years.</p><p>Within JWG3, we expect investigating different approaches to monitor space weather events using the data from different space geodetic techniques and, in particular, combinations thereof. Simulations will be beneficial to identify the contribution of different techniques and prepare for the analysis of real data. Different strategies for the combination of data will also be investigated, in particular, the weighting of estimates from different techniques in order to increase the performance and reliability of the combined estimates. Furthermore, existing algorithms for the detection and prediction of space weather events will be explored and improved to the extent possible. Furthermore, the geodetic measurement of the ionospheric electron density will be complemented by direct observations from the Sun gathered from existing spacecraft, such as SOHO, ACE, SDO, Parker Solar Probe, among others. The combination and joint evaluation of multiple datasets with the measurements of space geodetic observation techniques (e.g. geodetic VLBI) is still a great challenge. In addition, other indications for solar activity - such as the F10.7 index on solar radio flux, SOLERA as EUV proxy or rate of Global Electron Content (dGEC)-, provide additional opportunities for comparisons and validation.</p><p>Through these investigations, we will identify the key parameters useful to improve real-time/prediction of ionospheric/plasmaspheric VTEC, Ne estimates, as well as ionospheric perturbations, in case of extreme solar weather conditions. In general, we will gain a better understanding of space weather events and their effect on Earth’s atmosphere and near-Earth environment.</p>

2021 ◽  
Author(s):  
Alberto Garcia-Rigo ◽  
Benedikt Soja ◽  

<p>The JWG3 aims at investigating different approaches to monitor space weather events using the data from different space geodetic techniques and, in particular, combinations thereof. Simulations will also be considered since these could be beneficial to identify the contribution of different techniques and prepare for the analysis of real data. Different strategies for the combination of data are also to be investigated, in particular the weighting of estimates from different techniques in order to increase the performance and reliability of the combined estimates.</p><p>Furthermore, existing algorithms for the detection and prediction of space weather events shall be explored and improved to the extent possible. Additionally, the geodetic measurement of the ionospheric electron density will be complemented by direct observations from the Sun gathered from existing spacecraft, such as SOHO, ACE, SDO, Parker Solar Probe, among others. The combination and joint evaluation of multiple datasets from different space geodetic observation techniques (e.g., geodetic VLBI) is still a great challenge. In addition, other indications for solar activity - such as the F10.7 index on solar radio flux, SOLERA as EUV proxy or rate of Global Electron Content (dGEC), provide additional opportunities for comparisons and validation.</p><p>As per JWG3 objectives, these include the identification of the key parameters useful to improve real time/prediction of ionospheric/plasmaspheric VTEC, Ne estimates, as well as ionospheric perturbations, in case of extreme solar weather conditions. In general, we are on the way to gain a better understanding of space weather events and their effect on Earth’s atmosphere and near-Earth environment.</p>


2020 ◽  
Author(s):  
Irina Zakharenkova ◽  
Iurii Cherniak ◽  
Sergey Sokolovskiy ◽  
William Schreiner ◽  
Qian Wu ◽  
...  

<p>Many of the modern Low-Earth-Orbiting satellites are now equipped with dual-frequency GPS receivers for Radio Occultation (RO) and Precise Orbit Determination (POD). The space-borne GPS measurements can be successfully utilized for ionospheric climatology and space weather monitoring. The combination of GPS measurements, which include RO observations and POD measurements from the upward-looking GPS antenna, provides information about electron density distribution (profile) below the satellite orbit and an integrated Total Electron Content (TEC) above the satellite representing an important data source for electron density climatology above the F2 layer peak on a global scale. We demonstrate the advantages of using space-borne LEO GPS measurements, both RO and upward-looking, for Space Weather activity monitoring including specification of ionospheric plasma density structures at different altitudinal domains of the ionosphere in quiet and disturbed conditions. After the great success of the COSMIC-1 (Constellation Observing System for Meteorology, Ionosphere, and Climate) mission operating since 2006, the six COSMIC-2 satellites were launched into a 24 deg inclination orbit in June 2019. The COSMIC-2 scientific payloads with the advanced Tri-GNSS Radio-Occultation Receiver System provide multiple observation types including multi-GNSS TEC (limb and overhead), RO electron density profiles, amplitude/phase scintillation indices, in-situ ion densities and velocities. The COSMIC-2 advanced instruments allow detection of ionospheric plasma density structures of various scales, and the monitoring of high-rate amplitude and phase scintillations both above and below a satellite orbit. The COSMIC-2 multi-instrumental observations will contribute to a better understanding of the equatorial ionosphere morphology and future forecasting of ionospheric irregularities and radio wave scintillations that harmfully affect satellite-to-Earth communication and navigation systems. We present results of post-event analyses for severe space weather events demonstrating a great potential and contribution of the COSMIC-1/2 missions in combination with the ground-based GNSS receivers and other LEO missions like C/NOFS, DMSP, MetOp, TerraSAR-X, and Swarm for monitoring the space weather effects in the Earth’s ionosphere.</p>


2019 ◽  
Vol 13 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Manuel Bravo ◽  
Carlos Villalobos ◽  
Rodrigo Leiva ◽  
Luis Tamblay ◽  
Pedro Vega-Jorquera ◽  
...  

Objective: The diurnal variations of several ionospheric characteristics during the Space Weather Events of 4-10 September 2017, for Chilean latitudes, will be reported. Materials and Methods: Observations were made using a recently installed ionosonde at the Universidad de La Serena field station (29°52'S; 71°15’W). Also, reported is the total electron content determined using the upgraded Chilean network of dual-frequency Global Navigation Satellite Systems (GNSS) receivers. Results: Sudden ionospheric disturbances are described in terms of the minimum reflection frequency determined from ionosonde records. An attempt to derive the extent of the effect on high frequency propagation paths in the region is made using simultaneous ionosonde observations at other locations. The geomagnetic storm ionospheric effects are discussed in detail using the observed diurnal variation of maximum electron concentration (NmF2), virtual height of the F-region (h’F/F2) and Total Electron Content (TEC). These are complemented with the time-latitude variation of TEC for the 70°W meridian. Conclusion: It is found that large increases of NmF2, h’F/F2 and TEC observed during 8 September 2017 storm are well described in terms of the evolution of the Equatorial Ionospheric Anomaly (EIA) over the same time interval. Known physical mechanisms are suggested to explain most of the observations.


Author(s):  
M. Ulukavak ◽  
M. Yalçınkaya

Earthquakes are natural phenomena that shake the earth and cause many damage. Since the time of arrival of the earthquakes cannot be determined directly, some signs before the earthquake should be examined and interpreted by examining the environmental changes. One of the methods used for this is monitoring the ionospheric total electron content (TEC) changes in total electron content unit (TECU). GPS satellites have begun to be used as a means of monitoring ionospheric TEC anomalies before earthquakes since they began to be used as sensors around the world. In this study, three fault type (normal, thrust and strike-slip faulting) of 28 earthquakes with a magnitude greater than 7 (Mw) and the percentage changes of TEC anomalies before the earthquakes were investigated. The ionospheric TEC anomalies before the earthquake were calculated according to the 15-day running median statistical analysis method. Different solar and geomagnetic indices have been investigated to determine the active space weather conditions and quiet days before and after the earthquake. The TEC anomalies were determined during the quiet days before the earthquake by comparing the ionospheric anomalies that occurred before the earthquake after the determination of quiet days with the indices of the space weather conditions. The results show that there is a relationship between fault type and the earthquake precursor percentage changes and were determined as 47.6 % TECU for regions where normal faulting, 50.4 % TECU for regions where thrust faulting, and 44.2 % TECU for regions where strike-slip faulting occurred, respectively.


Author(s):  
Fabricio dos Santos Prol ◽  
Mainul Hoque ◽  
Arthur Amaral Ferreira

As part of the space weather monitoring, the response of the ionosphere and plasmasphere to geomagnetic storms is typically under continuous supervision by operational services. Fortunately, Global Navigation Satellite System (GNSS) receivers on board low Earth orbit satellites provides a unique opportunity for developing image representations that can capture the global distribution of the electron density in the plasmasphere and topside ionosphere. Among the difficulties of plasmaspheric imaging based on GNSS measurements, the development of procedures to invert the Total Electron Content (TEC) into electron density distributions remains as a challenging task. In this study, a new tomographic reconstruction technique is presented to estimate the electron density from TEC data along the METOP (Meteorological Operational) satellites. The proposed method is evaluated during four geomagnetic storms to check the capabilities of the tomography for space weather monitoring. The investigation shows that the developed method can successfully capture and reconstruct well-known enhancement and decrease of electron density variabilities during storms. The comparison with in-situ electron densities has shown an improvement around 11% and a better description of plasma variabilities due to the storms compared to the background. Our study also reveals that the plasmasphere TEC contribution to ground-based TEC may vary 10 to 60% during geomagnetic storms, and the contribution tends to reduce during the storm-recovery phase


2018 ◽  
Vol 8 ◽  
pp. A16 ◽  
Author(s):  
Norbert Jakowski ◽  
Mohammed Mainul Hoque

The Earth's plasmasphere contributes essentially to total electron content (TEC) measurements from ground or satellite platforms. Furthermore, as an integral part of space weather, associated plasmaspheric phenomena must be addressed in conjunction with ionosphere weather monitoring by operational space weather services. For supporting space weather services and mitigation of propagation errors in Global Navigation Satellite Systems (GNSS) applications we have developed the empirical Neustrelitz plasmasphere model (NPSM). The model consists of an upper L shell dependent part and a lower altitude dependent part, both described by specific exponential decays. Here the McIllwain parameter L defines the geomagnetic field lines in a centered dipole model for the geomagnetic field. The coefficients of the developed approaches are successfully fitted to numerous electron density data derived from dual frequency GPS measurements on-board the CHAMP satellite mission from 2000 to 2005. The data are utilized for fitting up to the L shell L = 3 because a previous validation has shown a good agreement with IMAGE/RPI measurements up to this value. Using the solar radio flux index F10.7 as the only external parameter, the operation of the model is robust, with 40 coefficients fast and sufficiently accurate to be used as a background model for estimating TEC or electron density profiles in near real time GNSS applications and services. In addition to this, the model approach is sensitive to ionospheric coupling resulting in anomalies such as the Nighttime Winter Anomaly and the related Mid-Summer Nighttime Anomaly and even shows a slight plasmasphere compression of the dayside plasmasphere due to solar wind pressure. Modelled electron density and TEC values agree with estimates reported in the literature in similar cases.


Universe ◽  
2021 ◽  
Vol 7 (9) ◽  
pp. 342
Author(s):  
Olga Maltseva ◽  
Artem Kharakhashyan ◽  
Tatyana Nikitenko

For a long time, the equivalent ionospheric slab thickness τ has remained in the shadow of ionospheric main parameters: the maximum density, NmF2 (or the critical frequency, foF2), and the total electron content. Empirical global models have been developed for these two parameters. Recently, several global models of τ have appeared concurrently. This paper compares τ of the Neustrelitz equivalent slab thickness model (NSTM), with τ(IRI-Plas) of the IRI-Plas model, and τ(Appr) of the approximation model, constructed along the 30° E meridian using data from several ionosondes. The choice of the model of the best conformity with observational data was made, which was used to study the effects of space weather during several magnetic storms in March 2012. The effects included: (1) a transition from negative disturbances at high latitudes to positive ones at low latitudes, (2) the super-fountain effect, which had been revealed and explained in previous papers, (3) a deepening of the main ionospheric trough. The efficiency of using τ(Appr) and τ(IRI-Plas) models for studying the effects of space weather has been confirmed. The advantage of the τ(Appr) model is its closeness to real data. The advantage of the τ(IRI-Plas) model is the ability to determine foF2 without ionosondes. The efficiency of the NSTM model is insufficient for a role of a global τ model due to the accuracy decreasing with the increasing latitude.


2019 ◽  
Author(s):  
Telmo dos Santos Klipp ◽  
Adriano Petry ◽  
Gabriel Sandim Falcão ◽  
Jonas Rodrigues de Souza ◽  
Eurico Rodrigues de Paula ◽  
...  

Abstract. In this work, a period of two years (2016–2017) of vertical total electron content (VTEC) from ionosondes operating in Brazil is compared to the International GNSS Service (IGS) data. Sounding instruments from National Institute for Space Research (INPE) provided the ionograms used, which were filtered based on confidence score (CS) and C-level flags evaluation. Differences between TEC from IGS maps and ionograms were accumulated in terms of root mean square error (RMSE). It has been noticed the TEC values provided by ionograms are systematically underestimated, which is attributed to a limitation in the electron density modeled for the ionogram topside that considers maximum height only around 800–900 Km, while IGS takes in account electron density from GNSS stations up to the satellite network orbits. The ionogram topside profiles covering the plasmasphere were re-modeled using an adaptive alpha-Chapman exponential decay that includes a transition function between the F2 layer and plasmasphere, and electron density integration height was extended to compute TEC. Chapman parameters for the F2 layer were extracted from each ionogram, and plasmaspheric scale height was set to 10,000 Km. Our analysis has shown the plasmaspheric basis electron density, assumed to be proportional to the electron peak density, plays an important role to reduce the RMSE values. Depending on the proportionality coefficient choice, mean RMSE reached a minimum of 5.32 TECU, that is 23 % lower than initial ionograms TEC errors.


2013 ◽  
Vol 13 (2) ◽  
pp. 375-384 ◽  
Author(s):  
Y. B. Yao ◽  
P. Chen ◽  
S. Zhang ◽  
J. J. Chen

Abstract. Observations from the South African TrigNet global navigation satellite system (GNSS) and vertical total electron content (VTEC) data from the Jason-1 satellite were used to analyze the variations in ionospheric electron density profiles over South Africa before and after the severe geomagnetic storms on 15 May 2005. Computerized ionospheric tomography (CIT) was used to inverse the 3-D structure of ionospheric electron density and its response to the magnetic storms. Inversion results showed that electron density significantly increased at 10:00 UT, 15 May compared with that at the same period on 14 May. Positive ionospheric storms were observed in the inversion region during the magnetic storms. Jason-1 data show that the VTEC observed on descending orbits on 15 May significantly increased, whereas that on ascending orbits only minimally changed. This finding is identical to the CIT result.


Sign in / Sign up

Export Citation Format

Share Document