scholarly journals Can an interplanetary magnetic field reach the surface of Venus?

2018 ◽  
Vol 36 (6) ◽  
pp. 1537-1543
Author(s):  
Yasuhito Narita ◽  
Uwe Motschmann

Abstract. We address the question of whether there is a possibility of an interplanetary magnetic field reaching Venus' surface by magnetic diffusion across the ionosphere. We present a model calculation, estimate the magnetic diffusion time at Venus, and find out that the typical diffusion timescale is in a range between 12 and 54 h, depending on the solar activity and the ionospheric magnetic field condition. The magnetic field can thus permeate Venus' surface and even its interior when the solar wind is stationary (i.e., no magnetic field reversal) on the timescale of half a day to several days.

2018 ◽  
Author(s):  
Yasuhito Narita ◽  
Uwe Motschmann

Abstract. The question is addressed if there is a possibility of interplanetary magnetic field reaching the Venus surface by magnetic diffusion across the ionosphere. We present a model calculation and estimate the magnetic diffusion time at Venus, and find out that the typical diffusion time scale is in a range between 11 and 40 h, depending on the solar activity and the ionospheric magnetic field condition. Magnetic field can thus permeate Venus surface and even Venus interior when the solar wind is stationary (i.e., no magnetic field reversal) on the time scale of half-a-day to several days.


2019 ◽  
Vol 47 (1) ◽  
pp. 85-87
Author(s):  
E.V. Maiewski ◽  
R.A. Kislov ◽  
H.V. Malova ◽  
O.V. Khabarova ◽  
V.Yu. Popov ◽  
...  

A stationary axisymmetric MHD model of the solar wind has been constructed, which allows us to study the spatial distribution of the magnetic field and plasma characteristics at radial distances from 20 to 400 radii of the Sun at almost all heliolatitudes. The model takes into account the changes in the magnetic field of the Sun during a quarter of the solar cycle, when the dominant dipole magnetic field is replaced by a quadrupole. Selfconsistent solutions for the magnetic and velocity fields, plasma concentration and current density of the solar wind depending on the phase of the solar cycle are obtained. It is shown that during the domination of the dipole magnetic component in the solar wind heliospheric current sheet (HCS) is located in the equatorial plane, which is a part of the system of radial and transverse currents, symmetrical in the northern and southern hemispheres. As the relative contribution of the quadrupole component to the total magnetic field increases, the shape of the HCS becomes conical; the angle of the cone gradually decreases, so that the current sheet moves entirely to one of the hemispheres. At the same time, at high latitudes of the opposite hemisphere, a second conical HCS arises, the angle of which increases. When the quadrupole field becomes dominant (at maximum solar activity), both HCS lie on conical surfaces inclined at an angle of 35 degrees to the equator. The model describes the transition from the fast solar wind at high latitudes to the slow solar wind at low latitudes: a relatively gentle transition in the period of low solar activity gives way to more drastic when high solar activity. The model also predicts an increase in the steepness of the profiles of the main characteristics of the solar wind with an increase in the radial distance from the Sun. Comparison of the obtained dependences with the available observational data is discussed.


2021 ◽  
Author(s):  
Martin Volwerk ◽  
Beatriz Sánchez-Cano ◽  
Daniel Heyner ◽  
Sae Aizawa ◽  
Nicolas André ◽  
...  

Abstract. Out of the two Venus flybys that BepiColombo uses as a gravity assist manoeuvre to finally arrive at Mercury, the first took place on 15 October 2020. After passing the bow shock, the spacecraft travelled along the induced magnetotail, crossing it mainly in the YVSO-direction. In this paper, the BepiColombo Mercury Planetary Orbiter Magnetometer (MPO-MAG) data are discussed, with support from three other plasma instruments: the Planetary Ion Camera (PICAM), the Mercury Electron Analyser (MEA) and the radiation monitor (BERM). Behind the bow shock crossing, the magnetic field showed a draping pattern consistent with field lines connected to the interplanetary magnetic field wrapping around the planet. This flyby showed a highly active magnetotail, with, e.g., strong flapping motions at a period of ~7 min. This activity was driven by solar wind conditions. Just before this flyby, Venus's induced magnetosphere was impacted by a stealth coronal mass ejection, of which the trailing side was still interacting with it during the flyby. This flyby is a unique opportunity to study the full length and structure of the induced magnetotail of Venus, indicating that the tail was most likely still present at about 48 Venus radii.


2020 ◽  
Author(s):  
Laura Vuorinen ◽  
Heli Hietala ◽  
Ferdinand Plaschke

<p>Downstream of the Earth's quasi-parallel shock, transients with higher earthward velocities than the surrounding magnetosheath plasma are often observed. These transients have been named magnetosheath jets. Due to their high dynamic pressure, jets can cause multiple types of effects when colliding into the magnetopause. Recently, jets have been linked to triggering magnetopause reconnection in case studies by Hietala et al. (2018) and Nykyri et al. (2019). Jets have been proposed to affect magnetopause reconnection in multiple ways. Jets can compress the magnetopause and make it thin enough for reconnection to occur. Jets could also affect the magnetic shear either by indenting the magnetopause or via the magnetic field of the jets themselves. Here we want to study whether the magnetic field of jets can statistically affect magnetopause reconnection. In particular, we are interested in whether jets could enhance reconnection during more quiet northward IMF conditions.</p><p>We statistically study the magnetic field within jets in the subsolar magnetosheath using measurements from the five Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft and OMNI solar wind data from 2008–2011. We investigate jets next to the magnetopause and find that the magnetic field within jets is statistically different compared to the non-jet magnetosheath. Our results suggest that during southward IMF, the non-jet magnetosheath magnetic field itself has more variation than the jets. This suggests that jets should have no statistical, neither enhancing nor suppressing, effect on reconnection during southward IMF. However, during northward IMF, the magnetic field within jets is statistically favorable for enhancing magnetic reconnection at the subsolar magnetopause as around 70 % of these jets exhibit southward fields close to the magnetopause.</p>


2021 ◽  
Vol 39 (5) ◽  
pp. 811-831
Author(s):  
Martin Volwerk ◽  
Beatriz Sánchez-Cano ◽  
Daniel Heyner ◽  
Sae Aizawa ◽  
Nicolas André ◽  
...  

Abstract. Out of the two Venus flybys that BepiColombo uses as a gravity assist manoeuvre to finally arrive at Mercury, the first took place on 15 October 2020. After passing the bow shock, the spacecraft travelled along the induced magnetotail, crossing it mainly in the YVSO direction. In this paper, the BepiColombo Mercury Planetary Orbiter Magnetometer (MPO-MAG) data are discussed, with support from three other plasma instruments: the Planetary Ion Camera (SERENA-PICAM) of the SERENA suite, the Mercury Electron Analyser (MEA), and the BepiColombo Radiation Monitor (BERM). Behind the bow shock crossing, the magnetic field showed a draping pattern consistent with field lines connected to the interplanetary magnetic field wrapping around the planet. This flyby showed a highly active magnetotail, with e.g. strong flapping motions at a period of ∼7 min. This activity was driven by solar wind conditions. Just before this flyby, Venus's induced magnetosphere was impacted by a stealth coronal mass ejection, of which the trailing side was still interacting with it during the flyby. This flyby is a unique opportunity to study the full length and structure of the induced magnetotail of Venus, indicating that the tail was most likely still present at about 48 Venus radii.


2021 ◽  
Author(s):  
Martin Volwerk ◽  

<p>Out of the two Venus flybys that BepiColombo uses as a gravity assist manoeuvre to finally arrive at Mercury, the first took place on 15 October 2020. After passing the bow shock, the spacecraft travelled along the induced magnetotail, crossing it mainly in the Y<sub>VSO</sub>-direction. We discuss the BepiColombo Mercury Planetary Orbiter Magnetometer (MPOMAG)<br />data, with support from three other plasma instruments: the Planetary Ion Camera (PICAM), the Mercury<br />Electron Analyser (MEA) and the radiation monitor (BERM). Behind the bow shock crossing, the magnetic field showed a<br />draping pattern consistent with field lines connected to the interplanetary magnetic field wrapping around the planet. This flyby showed a highly active magnetotail, with, e.g., strong flapping motions at a period of ~7 min. This activity was driven by solar wind conditions. Just before this flyby, Venus’s induced magnetosphere was impacted by a stealth coronal mass ejection, of which the trailing side was still interacting with it during the flyby. This flyby is a unique opportunity to study the full length and structure of the induced magnetotail of Venus, indicating that the tail was most likely still present at about 48 Venus radii. This presentation will take place after the second Venus flyby by Solar Orbiter and BepiColombo and Solar Orbiter on 9 and 10 August, respectively.</p>


2006 ◽  
Vol 24 (10) ◽  
pp. 2735-2741 ◽  
Author(s):  
R. D'Amicis ◽  
R. Bruno ◽  
B. Bavassano ◽  
V. Carbone ◽  
L. Sorriso-Valvo

Abstract. Statistics associated with the fluctuations in solar wind parameters show a remarkable dependence on the solar activity phase. In particular, we focus our attention on the waiting-time statistics governing the MHD fluctuations of the z-component of the interplanetary magnetic field, which are important within the framework of the Sun-Earth connections, and briefly discuss the preliminary results. Data from several spacecrafts, covering different phases of the solar cycle and different radial distances, are used. We found that propagating Alfvénic fluctuations and convected structures strongly influence the statistics which vary from quasi-Poissonian to power law.


2013 ◽  
Vol 8 (S300) ◽  
pp. 456-457
Author(s):  
Teodor Pintér ◽  
Milan Rybanský ◽  
Ivan Dorotovič

AbstractThe global magnetic field of the Sun is the determining parameter of spreading the solar wind in the interplanetary space. The global field changes the polarity synchronically with the cycle of solar activity. The interesting indicator of the polarity change are the occurence so-called polar belts of the prominences. The article shows the performance of these belts on observational work from 1975 to 2009. A coordinated effort is suggested for the compilation of data from different observers following the method described by Rušin et al., 1988.


Sign in / Sign up

Export Citation Format

Share Document