scholarly journals Photomineralization and photomethanification of dissolved organic matter in Saguenay River surface water

2015 ◽  
Vol 12 (22) ◽  
pp. 6823-6836 ◽  
Author(s):  
Y. Zhang ◽  
H. Xie

Abstract. Rates and apparent quantum yields of photomineralization (AQYDOC) and photomethanification (AQYCH4) of chromophoric dissolved organic matter (CDOM) in Saguenay River surface water were determined at three widely differing dissolved oxygen concentrations ([O2]) (suboxic, air saturation, and oxygenated) using simulated-solar radiation. Photomineralization increased linearly with CDOM absorbance photobleaching for all three O2 treatments. Whereas the rate of photochemical dissolved organic carbon (DOC) loss increased with increasing [O2], the ratio of fractional DOC loss to fractional absorbance loss showed an inverse trend. CDOM photodegradation led to a higher degree of mineralization under suboxic conditions than under oxic conditions. AQYDOC determined under oxygenated, suboxic, and air-saturated conditions increased, decreased, and remained largely constant with photobleaching, respectively; AQYDOC obtained under air saturation with short-term irradiations could thus be applied to longer exposures. AQYDOC decreased successively from ultraviolet B (UVB) to ultraviolet A (UVA) to visible (VIS), which, alongside the solar irradiance spectrum, points to VIS and UVA being the primary drivers for photomineralization in the water column. The photomineralization rate in the Saguenay River was estimated to be 2.31 × 108 mol C yr−1, accounting for only 1 % of the annual DOC input into this system. Photoproduction of CH4 occurred under both suboxic and oxic conditions and increased with decreasing [O2], with the rate under suboxic conditions ~ 7–8 times that under oxic conditions. Photoproduction of CH4 under oxic conditions increased linearly with photomineralization and photobleaching. Under air saturation, 0.00057 % of the photochemical DOC loss was diverted to CH4, giving a photochemical CH4 production rate of 4.36 × 10−6 mol m−2 yr−1 in the Saguenay River and, by extrapolation, of (1.9–8.1) × 108 mol yr−1 in the global ocean. AQYCH4 changed little with photobleaching under air saturation but increased exponentially under suboxic conditions. Spectrally, AQYCH4 decreased sequentially from UVB to UVA to VIS, with UVB being more efficient under suboxic conditions than under oxic conditions. On a depth-integrated basis, VIS prevailed over UVB in controlling CH4 photoproduction under air saturation while the opposite held true under O2-deficiency. An addition of micromolar levels of dissolved dimethyl sulfide (DMS) substantially increased CH4 photoproduction, particularly under O2-deficiency; DMS at nanomolar ambient concentrations in surface oceans is, however, unlikely a significant CH4 precursor. Results from this study suggest that CDOM-based CH4 photoproduction only marginally contributes to the CH4 supersaturation in modern surface oceans and to both the modern and Archean atmospheric CH4 budgets, but that the photochemical term can be comparable to microbial CH4 oxidation in modern oxic oceans. Our results also suggest that anoxic microniches in particulate organic matter and phytoplankton cells containing elevated concentrations of precursors of the methyl radical such as DMS may provide potential hotspots for CH4 photoproduction.

2015 ◽  
Vol 12 (16) ◽  
pp. 14303-14341 ◽  
Author(s):  
Y. Zhang ◽  
H. Xie

Abstract. Rates and apparent quantum yields of photomineralization (AQYDOC) and photomethanification (AQYCH4) of chromophoric dissolved organic matter (CDOM) in Saguenay River surface water were determined at three widely differing dissolved oxygen concentrations ([O2]) (suboxic, air-saturation, and oxygenated) using simulated-solar radiation. Photomineralization increased linearly with CDOM absorbance photobleaching for all three O2 treatments. Whereas the rate of photochemical dissolved organic carbon (DOC) loss increased with increasing [O2], the ratio of fractional DOC loss to fractional absorbance loss showed an inverse trend. CDOM photodegradation led to a nearly complete mineralization under suboxic conditions but to only a partial mineralization under oxic conditions. AQYDOC determined under oxygenated, suboxic, and air-saturated conditions increased, decreased, and remained largely constant with photobleaching, respectively; AQYDOC obtained under air-saturation with short-term irradiations could thus be applied to longer exposures. AQYDOC decreased successively from ultraviolet B (UVB) to ultraviolet A (UVA) to visible (VIS), which, alongside the solar irradiance spectrum, points to VIS and UVA being the primary drivers for photomineralization in the water column. The photomineralization rate in the Saguenay River was estimated to be 2.31 × 108 mol C yr−1, accounting for only 1 % of the annual DOC input into this system. Photoproduction of CH4 occurred under both suboxic and oxic conditions and increased with decreasing [O2], with the rate under suboxic conditions ~ 7–8 times that under oxic conditions. Photoproduction of CH4 under oxic conditions increased linearly with photomineralization and photobleaching. Under air-saturation, 0.00057 % of the photochemical DOC loss was diverted to CH4, giving a photochemical CH4 production rate of 4.36 × 10−6 mol m−2 yr−1 in the Saguenay River and, by extrapolation, of (1.9–8.1) × 108 mol yr−1 in the global ocean. AQYCH4 changed little with photobleaching under air-saturation but increased exponentially under suboxic conditions. Spectrally, AQYCH4 decreased sequentially from UVB to UVA to VIS, with UVB being more efficient under suboxic conditions than under oxic conditions. On a depth-integrated basis, VIS prevailed over UVB in controlling CH4 photoproduction under air-saturation while the opposite held true under O2-deficiency. An addition of micromolar levels of dissolved dimethyl sulfide (DMS) substantially increased CH4 photoproduction, particularly under O2-deficiency; DMS at nanomolar ambient concentrations in surface oceans is, however, unlikely a significant CH4 precursor. Results from this study suggest that CDOM-based CH4 photoproduction only marginally contributes to the CH4 supersaturation in modern surface oceans and to both the modern and Archean atmospheric CH4 budgets, but that the photochemical term can be comparable to microbial CH4 oxidation in modern oxic oceans. Our results also suggest that anoxic microniches in particulate organic matter and phytoplankton cells containing elevated concentrations of precursors of the methyl radical such as DMS may provide potential hotspots for CH4 photoproduction.


2021 ◽  
pp. 1-14
Author(s):  
Sami Khettaf ◽  
Roumaissa Boumaraf ◽  
Fatiha Benmahdi ◽  
Kamel-Eddine Bouhidel ◽  
Mohammed Bouhelassa

2013 ◽  
Vol 10 (11) ◽  
pp. 7207-7217 ◽  
Author(s):  
Y. Yamashita ◽  
Y. Nosaka ◽  
K. Suzuki ◽  
H. Ogawa ◽  
K. Takahashi ◽  
...  

Abstract. Chromophoric dissolved organic matter (CDOM) ubiquitously occurs in marine environments and plays a significant role in the marine biogeochemical cycles. Basin scale distributions of CDOM have recently been surveyed in the global ocean and indicate that quantity and quality of oceanic CDOM are mainly controlled by in situ production and photobleaching. However, factors controlling the spectral parameters of CDOM in the UV region, i.e., spectral slope of CDOM determined at 275–295 nm (S275–295) and the ratio of two spectral slope parameters (SR); the ratio of S275–295 to S350–400, have not been well documented. To evaluate the factor controlling the spectral characteristics of CDOM in the UV region in the open ocean, we determined the quantitative and qualitative characteristics of CDOM in the subarctic and subtropical surface waters (5–300 m) of the western North Pacific. Absorption coefficients at 320 nm in the subarctic region were higher than those in the subtropical region throughout surface waters, suggesting that magnitudes of photobleaching were different between the two regions. The values of S275–295 and SR were also higher in the subtropical region than the subarctic region. The dark microbial incubation showed biodegradation of DOM little affected S275–295, but slightly decreased SR. On the other hand, increases in S275–295 and relative stableness of SR were observed during photo-irradiation incubations respectively. These experimental results indicated that photobleaching of CDOM mainly induced qualitative differences in CDOM at UV region between the subarctic and subtropical surface waters. The results of this study imply that S275–295 can be used as a tracer of photochemical history of CDOM in the open ocean.


2019 ◽  
Vol 5 (10) ◽  
pp. 1709-1722 ◽  
Author(s):  
Robin Wünsch ◽  
Julia Plattner ◽  
David Cayon ◽  
Fabienne Eugster ◽  
Jens Gebhardt ◽  
...  

UV/H2O2 treatment of sand-filtered surface water before soil aquifer treatment increases the total removal of organic micropollutants and has an impact on microbial activity without pronounced effects on dissolved organic matter removal.


2015 ◽  
Vol 15 (5) ◽  
pp. 2295-2312 ◽  
Author(s):  
T. Launois ◽  
S. Belviso ◽  
L. Bopp ◽  
C. G. Fichot ◽  
P. Peylin

Abstract. The global budget of tropospheric carbonyl sulfide (OCS) is believed to be at equilibrium because background air concentrations have remained roughly stable over at least the last decade. Since the uptake of OCS by leaves (associated with photosynthesis) and soils have been revised significantly upwards recently, an equilibrated budget can only be obtained with a compensatory source of OCS. It has been assumed that the missing source of OCS comes from the low-latitude ocean, following the incident solar flux. The present work uses parameterizations of major production and removal processes of organic compounds in the NEMO-PISCES (Nucleus for European Modelling of the Ocean, Pelagic Interaction Scheme for Carbon and Ecosystem Studies) ocean general circulation and biogeochemistry model to assess the marine source of OCS. In addition, the OCS photo-production rates computed with the NEMO-PISCES model~were evaluated independently using the UV absorption coefficient of chromophoric dissolved organic matter (derived from satellite ocean color data) and apparent quantum yields available in the literature. Our simulations show global direct marine emissions of OCS in the range of 573–3997 GgS yr−1, depending mostly on the quantification of the absorption rate of chromophoric dissolved organic matter. The high estimates of that range are unlikely, as they correspond to a formulation that most likely overestimate photo-production process. Low and medium (813 GgS yr−1) estimates derived from the NEMO-PISCES model are however consistent spatially and temporally~with the suggested missing source of Berry et al. (2013), allowing us thus to close the global budget of OCS given the recent estimates of leaf and soil OCS uptake.


2015 ◽  
Vol 29 (7) ◽  
pp. 917-934 ◽  
Author(s):  
T. S. Catalá ◽  
I. Reche ◽  
M. Álvarez ◽  
S. Khatiwala ◽  
E. F. Guallart ◽  
...  

2005 ◽  
Vol 2 (1) ◽  
pp. 75-86 ◽  
Author(s):  
W. X. Schulze

Abstract. Mass spectrometry based analysis of proteins is widely used to study cellular processes in model organisms. However, it has not yet routinely been applied in environmental research. Based on observations that protein can readily be detected as a component of dissolved organic matter (DOM), this article gives an example about the possible use of protein analysis in ecology and environmental sciences focusing on different terrestrial ecosystems. At this stage, there are two areas of interest: (1) the identification of phylogenetic groups contributing to the environmental protein pool, and (2) identification of the organismic origin of specific enzymes that are important for ecosystem processes. In this paper, mass spectrometric protein analysis was applied to identify proteins from decomposing plant material and DOM of soil leachates and surface water samples derived from different environments. It is concluded, that mass spectrometric protein analysis is capable of distinguishing phylogenetic origin of proteins from litter protein extracts, leachates of different soil horizons, and from various sources of terrestrial surface water. Current limitation is imposed by the limited knowledge of complete genomes of soil organisms. The protein analysis allows to relate protein presence to biogeochemical processes, and to identify the source organisms for specific active enzymes. Further applications, such as in pollution research are conceivable. In summary, the analysis of proteins opens a new area of research between the fields of microbiology and biogeochemistry.


Sign in / Sign up

Export Citation Format

Share Document