subarctic region
Recently Published Documents


TOTAL DOCUMENTS

113
(FIVE YEARS 45)

H-INDEX

18
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Yulia Zakharova ◽  
Maria Bashenkhaeva ◽  
Yuri Galachyants ◽  
Darya Petrova ◽  
Irina Tomberg ◽  
...  

2021 ◽  
Author(s):  
Stefanie Falk ◽  
Ane V. Vollsnes ◽  
Aud B. Eriksen ◽  
Lisa Emberson ◽  
Connie O'Neill ◽  
...  

Abstract. The unique vegetation of the subarctic region acclimatized to extremes of cold and midnight sun are likely to be at threat from the combined impacts of climate change and increasing ozone concentrations [O3]. The atmospheric and climatic characteristics of the subarctic are known to lead to pronounced peak [O3] in spring. To date, only a few studies assessed the response of subarctic vegetation to variations in climate and air pollution. This study looks to fill this knowledge gap by examining essential climate variables, in particular ozone, over the past few decades. We evaluate the extent to which two recent years (2018 and 2019) deviate from climatic and [O3] norms and how these potentially more frequent future deviations may influence ozone damage to subarctic vegetation. We find that 2018 was an anomalously warm and bright year, particularly in spring and early summer. Higher than average [O3] was observed in April/May while frequent episodes of ozone volume mixing ratios (VMRs) above 40 ppb occurred in June–August. These episodes are in part attributable to forest fires in the Northern Hemisphere and warmer and sunnier conditions. We apply the integrated flux-metric Phytotoxic Ozone Dose (POD) to determine ozone risk and damage to vegetation as a function of [O3], environmental factors, and species-specific physiology. Our study suggests that using generic parameterizations in assessments likely leads to underestimating the risk of ozone damage in this region. We find that bespoke parameterizations of plant functional types (PFTs) for subarctic vegetation bio-types result in an ozone-induced biomass loss of 2.5 to 17.4 %. For some species, this loss is up to 6 % larger than projected from generic parameterizations. Efforts should be targeted towards accurately defining subarctic vegetations' physiological response to essential climate variables. Our method could help to improve regional and global scale biogeochemical cycling under current and future climates.


2021 ◽  
Vol 168 (3-4) ◽  
Author(s):  
Miho Ishizu ◽  
Yasumasa Miyazawa ◽  
Xinyu Guo

AbstractLong-term variations in ocean acidification indices in the Northwest Pacific were examined using observational data and a biogeochemical model with an operational ocean model product for the period 1993–2018. The model and observational data for the surface ocean (< 100-m depth) exhibit consistent patterns of ocean acidification in the subtropical and Kuroshio Extension regions and relative alkalinization (i.e., reduced acidification) in the subarctic region of the Northwest Pacific. Below 100-m depth, acidification dominated in the subtropical regions and alkalinization in the subarctic regions. We attribute the excess acidification in the subtropical and Kuroshio regions to the vertical mixing of dissolved inorganic carbon (DIC) exceeding the DIC release by air–sea exchange. These regional differences in acidification and alkalinization are attributed to spatially variable biological processes in the upper ocean and horizontal and vertical physical redistribution of DIC. Our model and observational results have implications for the spatial extent and pattern of ocean acidification, along with the strength of the ocean carbon sink, which are key aspects of global climate change.


2021 ◽  
Vol 5 ◽  
Author(s):  
Guðrún Helgadóttir ◽  
Hans Renssen ◽  
Tom Robin Olk ◽  
Tone Jøran Oredalen ◽  
Laufey Haraldsdóttir ◽  
...  

The topic investigated is the social-ecological system of Arctic charr (Salvelinus alpinus) fishing and aquaculture as a tourism product in an era of climate change. Arctic charr is a resilient salmonid species that was traditionally an important part of the sustenance economy in Arctic and Subarctic communities as a source of fresh food throughout the year. Arctic charr populations have declined in recent years, in part due to climate change. These changes in the freshwater ecosystems in turn affect the cultural and economic traditions of freshwater fishing and consumption. This development has consequences for the tourism industry as hunting, fishing and consuming local and traditional food is important in branding tourism destinations. Fisheries are no longer the source of this important ingredient in the Nordic culinary tradition, instead aquaculture production supplies nearly all the Arctic charr consumed. In this paper, we pool the resources of an interdisciplinary team of scholars researching climate change, freshwater ecology, aquaculture and tourism. We integrate knowledge from these fields to discuss likely future scenarios for Arctic charr, their implications for transdisciplinary social ecosystem approaches to sustainable production, marketing and management, particularly how this relates to the growing industry of tourism in the Nordic Arctic and Subarctic region. We pose the questions whether Arctic Charr will be on the menu in 20 years and if so, where will it come from, and what consequences does that have for local food in tourism of the region? Our discussion starts with climate change and the question of how warm it is likely to get in the Nordic Arctic, particularly focusing on Iceland and Norway. To address the implications of the warming of lakes and rivers of the global north for Arctic charr we move on to a discussion of physiological and ecological factors that are important for the distribution of the species. We present the state of the art of Arctic charr aquaculture before articulating the importance of the species for marketing of local and regional food, particularly in the tourism market. Finally, we discuss the need for further elaboration of future scenarios for the interaction of the Arctic charr ecosystem and the economic trade in the species and draw conclusions about sustainable future development.


2021 ◽  
Author(s):  
Stefanie Falk ◽  
Ane Victoria Vollsnes ◽  
Aud Eriksen ◽  
Frode Stordal ◽  
Terje Koren Berntsen

Abstract. We assess the quality of regional or global ozone reanalysis data for biome modeling and ozone (O3) risk mapping over subarctic Europe where monitoring is sparse. Reanalysis data can be subject to systematic errors originating from, e.g., quality of assimilated data, distribution and strength of precursor sources, incomprehensive atmospheric chemistry or land-atmosphere exchange, and spatiotemporal resolution. Here, we evaluate three selected global and regional ozone reanalysis products. Our analysis suggests that global reanalysis products do not reproduce observed ground-level ozone well in the subarctic region. Only the Copernicus Atmosphere Monitoring Service Regional Air Quality (CAMSRAQ) reanalysis ensemble sufficiently captures the observed seasonal cycle. We computed the root mean square error (RMSE) by season. The RMSE variation between (2.6–6.6) ppb suggests inherent challenges even for the best reanalysis product (CAMSRAQ). O3 concentrations in the region are systematically underestimated by (2–6) ppb compared to the tropospheric background ozone concentrations derived from observations. Furthermore, we explore the suitability of the CAMSRAQ for gap-filling at one site in northern Norway with a long-term record but not belonging to the observational network. We devise a reconstruction method based on Reynolds decomposition and adhere to recommendations by the United Nations Economic Commission for Europe (UNECE) Long Range Transboundary Air Pollution (LRTAP) convention. The thus reconstructed data for two weeks in July 2018 are compared with CAMSRAQ evaluated at the nearest neighboring grid point. Our reconstruction method performs better (78 % accuracy) than CAMSRAQ (73 % accuracy) but diurnal extremes are underestimated by both.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tesfa Worku Meshesha ◽  
Junye Wang ◽  
Nigus Demelash Melaku ◽  
Cynthia N. McClain

AbstractGroundwater is a vital resource for human welfare. However, due to various factors, groundwater pollution is one of the main environmental concerns. Yet, it is challenging to simulate groundwater quality dynamics due to the insufficient representation of nutrient percolation processes in the soil and Water Assessment Tool model. The objectives of this study were extending the SWAT module to predict groundwater quality. The results proved a linear relationship between observed and calculated groundwater quality with coefficient of determination (R2), Nash–Sutcliffe efficiency (NSE), percent bias (PBIAS) values in the satisfied ranges. While the values of R2, NSE and PBIAS were 0.69, 0.65, and 2.68 during nitrate calibration, they were 0.85, 0.85 and 5.44, respectively during nitrate validation. Whereas the values of R2, NSE and PBIAS were 0.59, 0.37, and − 2.21 during total dissolved solid (TDS) calibration and they were 0.81, 0.80, 7.5 during the validation. The results showed that the nitrate and TDS concentrations in groundwater might change with varying surface water quality. This indicated the requirement for designing adaptive management scenarios. Hence, the extended SWAT model could be a powerful tool for future regional to global scale modelling of nutrient loads and effective surface and groundwater management.


2021 ◽  
Author(s):  
Miho Ishizu ◽  
Yasumasa Miyazawa ◽  
Xinyu Guo

Abstract The multi-decadal variation in ocean acidification indices in the Northwest Pacific was examined using a biogeochemical model with an operational ocean model product for the period 1993–2018. We found that ocean acidification varied regionally in the Northwest Pacific. The surface ocean (above 100 m depth) underwent acidification that progressed more quickly in the subtropical region and the Kuroshio extension than in the subarctic region due to vertical mixing of the dissolved inorganic carbon (DIC) supply exceeding DIC release by air–sea exchange. Below 100 m depth, acidification and alkalinization occurred in the subtropical and subarctic regions, respectively. We attribute these regional differences in acidification and alkalinization to spatially variable biological processes in the upper layer and physical redistribution of DIC, both horizontally and vertically.


2021 ◽  
Author(s):  
Yulia Robertovna Zakharova ◽  
Maria Victorovna Bashenkhaeva ◽  
Yuri Pavlovich Galachyants ◽  
Darya Petrovna Petrova ◽  
Irina Victorovna Tomberg ◽  
...  

Abstract Although under-ice microbial communities are subject to a cold environment, low concentrations of nutrients, and a lack of light, they nevertheless take an active part in biogeochemical cycles. However, we still lack an understanding of how high their diversity is and how these communities are distributed during the long-term ice-cover period. Here we assessed for the first time the composition and distribution of microbial communities during the ice-cover period in two subarctic lakes (Labynkyr and Vorota) located in the area of the lowest temperature in the Northern Hemisphere. The diversity distribution and abundance of main bacterial taxa, and the composition of microalgae, varied by time and habitat. The 16S rRNA gene sequencing method revealed, in general, a high diversity of bacterial communities where Proteobacteria (~59%) and Actinobacteria (~11%) prevailed. There were significant differences between the communities of the lakes: Chthoniobacteraceae, Moraxellaceae, and Pirellulaceae were abundant in Lake Labynkyr, while Cyanobacteria, Oligoflexales, Ilumatobacteraceae, and Methylacidiphilaceae were more abundant in Lake Vorota. The most abundant families were evenly distributed in April, May and June their contribution was different in different habitats. Moraxellaceae, Ilumatobacteraceae dominated in April in the water column, while Sphingomonadaceae dominated both in water column and on the ice bottom. In May, the number of Comamonadaceae increased and reached the maximum in June, while Cyanobacteria, Oxalobacteraceae and Pirellulaceae followed. We found a correlation of the structure of bacterial communities with snow thickness, рН, total nitrogen concentration, and conductivity. We isolated psychrophilic heterotrophic bacteria both from dominating and minor taxa of the communities studied. This allowed for specifying their ecological function in the under-ice communities. These findings will advance our knowledge of the under-ice microbial life.


Sign in / Sign up

Export Citation Format

Share Document