scholarly journals A sea surface temperature reconstruction for the southern Indian Ocean trade wind belt from corals in Rodrigues Island (19° S, 63° E)

2016 ◽  
Vol 13 (20) ◽  
pp. 5827-5847 ◽  
Author(s):  
Jens Zinke ◽  
Lars Reuning ◽  
Miriam Pfeiffer ◽  
Jasper A. Wassenburg ◽  
Emily Hardman ◽  
...  

Abstract. The western Indian Ocean has been warming rapidly over recent decades, causing a greater number of extreme climatic events. It is therefore of paramount importance to improve our understanding of links between Indian Ocean sea surface temperature (SST) variability, climate change and sustainability of tropical coral reef ecosystems. Here we present monthly resolved coral Sr ∕ Ca records from two different locations from Rodrigues Island (63° E, 19° S) in the south-central Indian Ocean trade wind belt. We reconstruct SST based on a linear relationship with the Sr ∕ Ca proxy with records starting from 1781 and 1945, respectively. We assess relationships between the observed long-term SST and climate fluctuations related to the El Niño–Southern Oscillation (ENSO), the Subtropical Indian Ocean Dipole Mode (SIOD) and the Pacific Decadal Oscillation (PDO) between 1945 and 2006, respectively. The reproducibility of the Sr ∕ Ca records is assessed as are the potential impacts of diagenesis and corallite orientation on Sr ∕ Ca–SST reconstructions. We calibrate individual robust Sr ∕ Ca records with in situ SST and various gridded SST products. The results show that the SST record from Cabri provides the first Indian Ocean coral proxy time series that records the SST signature of the PDO in the south-central Indian Ocean since 1945. We suggest that additional records from Rodrigues Island can provide excellent records of SST variations in the southern Indian Ocean trade wind belt to unravel teleconnections with the SIOD/ENSO/PDO on longer timescales.

2016 ◽  
Author(s):  
J. Zinke ◽  
L. Reuning ◽  
M. Pfeiffer ◽  
J. Wassenburg ◽  
E. Hardman ◽  
...  

Abstract. The western Indian Ocean has been warming rapidly over the past decades and this has adversely impacted the Asian Monsoon circulation. It is therefore of paramount importance to improve our understanding of links between Indian Ocean Sea Surface Temperature (SST) variability, climate change, and sustainability of reef ecosystems. Here we present two monthly-resolved coral Sr/Ca records (Totor, Cabri) from Rodrigues Island (63° E, 19° S) in the south-central Indian Ocean trade wind belt, and reconstruct SST based on the linear relationship with the Sr/Ca proxy. The records extend to 1781 and 1945, respectively. We assess the reproducibility of the Sr/Ca records, and potential biases in our reconstruction associated with the orientation of corallites. We quantify long-term SST trends and identify interannual relationships with the El Niño-Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO). We conclude that careful screening for diagenesis and orientation of corallites is of paramount importance to assess the quality of Sr/Ca-based SST reconstructions. Our proxy records provide a reliable SST reconstruction between 1945 and 2006. We identify strong teleconnections with the ENSO/PDO over the past 60 years, eg. warming of SST during El Niño or positive PDO. We suggest that additional records from Rodrigues Island can provide excellent records of SST variations in the southern Indian Ocean trade wind belt and teleconnections with the ENSO/PDO on longer time scales.


2004 ◽  
Vol 45 (1-2) ◽  
pp. 55-73 ◽  
Author(s):  
Andrey G. Kostianoy ◽  
Anna I. Ginzburg ◽  
Michel Frankignoulle ◽  
Bruno Delille

2014 ◽  
Vol 11 (3) ◽  
pp. 3111-3136 ◽  
Author(s):  
C. Funk ◽  
A. Hoell ◽  
S. Shukla ◽  
I. Bladé ◽  
B. Liebmann ◽  
...  

Abstract. In southern Ethiopia, Eastern Kenya, and southern Somalia, poor boreal spring rains in 1999, 2000, 2004, 2007, 2008, 2009, and 2011 contributed to severe food insecurity and high levels of malnutrition. Predicting rainfall deficits in this region on seasonal and decadal time frames can help decision makers implement disaster risk reduction measures while guiding climate-smart adaptation and agricultural development. Building on recent research that links more frequent droughts in that region to a stronger Walker Circulation, warming in the Indo-Pacific warm pool, and an increased western Pacific sea surface temperature (SST) gradient, we show that the two dominant modes of East African boreal spring rainfall variability are tied, respectively, to western-central Pacific and central Indian Ocean SST. Variations in these rainfall modes can be predicted using two previously defined SST indices – the West Pacific Gradient (WPG) and Central Indian Ocean index (CIO), with the WPG and CIO being used, respectively, to predict the first and second rainfall modes. These simple indices can be used in concert with more sophisticated coupled modeling systems and land surface data assimilations to help inform early warning and guide climate outlooks.


2005 ◽  
Vol 18 (9) ◽  
pp. 1351-1368 ◽  
Author(s):  
Pascal Terray ◽  
Sébastien Dominiak

Abstract Here the 1976–77 climate regime shift that was accompanied by a remarkable change in the lead–lag relationships between Indian Ocean sea surface temperature (SST) and El Niño evolution is shown. After the 1976–77 regime shift, a correlation analysis suggests that southern Indian Ocean SSTs observed during late boreal winter are a key precursor in predicting El Niño evolution as the traditional oceanic heat content anomalies in the equatorial Pacific or zonal wind anomalies over the equatorial western Pacific. The possible physical mechanisms underlying this highly significant statistical relationship are discussed. After the 1976–77 regime shift, southern Indian Ocean SST anomalies produced by Mascarene high pulses during boreal winter trigger coupled air–sea processes in the tropical eastern Indian Ocean during the following seasons. This produces a persistent remote forcing on the Pacific climate system, promoting wind anomalies over the western equatorial Pacific and modulating the regional Hadley cell in the southwest Pacific. These modulations, in turn, excite Rossby waves, which produce quasi-stationary circulation anomalies in the extratropical South Pacific, responsible for the development of the southern branch of the “horseshoe” El Niño pattern. The change of the background SST state that occurred in the late 1970s over the Indian Ocean may also explain why ENSO evolution is different before and after the 1976–77 regime shift. These results shed some light on the possible influence of global warming or decadal fluctuations on El Niño evolution through changes in teleconnection patterns between the Indian and Pacific Oceans.


Author(s):  
Dominic R. Kniveton ◽  
Martin C. Todd ◽  
Jean Sciare ◽  
Nikos Mihalopoulos

Dimethylsulphide (DMS) in the atmosphere may play an important role in the climate system. This study shows an inverse relationship between ultraviolet extremes and atmospheric DMS, independent of changes in wind speed, sea–surface temperature and photosynthetically active radiation, as measured at Amsterdam Island in the Southern Indian Ocean.


Sign in / Sign up

Export Citation Format

Share Document