southern indian ocean
Recently Published Documents


TOTAL DOCUMENTS

405
(FIVE YEARS 66)

H-INDEX

41
(FIVE YEARS 4)

2022 ◽  
Author(s):  
SUBHADEEP CHOWDHURY ◽  
Hugo Berthelot ◽  
Stéphane L'Helguen ◽  
Jean-François Maguer ◽  
Carolin Löscher ◽  
...  

Author(s):  
Ryan R. Reisinger ◽  
Stuart Corney ◽  
Ben Raymond ◽  
Amanda T. Lombard ◽  
Marthán N. Bester ◽  
...  

2021 ◽  
Author(s):  
Eldridge M. Moores ◽  
Nathan Simmons ◽  
Asish R. Basu ◽  
Robert T. Gregory

ABSTRACT Ophiolite complexes represent fragments of ocean crust and mantle formed at spreading centers and emplaced on land. The setting of their origin, whether at midocean ridges, back-arc basins, or forearc basins has been debated. Geochemical classification of many ophiolite extrusive rocks reflect an approach interpreting their tectonic environment as the same as rocks with similar compositions formed in various modern oceanic settings. This approach has pointed to the formation of many ophiolitic extrusive rocks in a supra-subduction zone (SSZ) environment. Paradoxically, structural and stratigraphic evidence suggests that many apparent SSZ-produced ophiolite complexes are more consistent with mid-ocean ridge settings. Compositions of lavas in the southeastern Indian Ocean resemble those of modern SSZ environments and SSZ ophiolites, although Indian Ocean lavas clearly formed in a mid-ocean ridge setting. These facts suggest that an interpretation of the tectonic environment of ophiolite formation based solely on their geochemistry may be unwarranted. New seismic images revealing extensive Mesozoic subduction zones beneath the southern Indian Ocean provide one mechanism to explain this apparent paradox. Cenozoic mid-ocean-ridge–derived ocean floor throughout the southern Indian Ocean apparently formed above former sites of subduction. Compositional remnants of previously subducted mantle in the upper mantle were involved in generation of mid-ocean ridge lavas. The concept of historical contingency may help resolve the ambiguity on understanding the environment of origin of ophiolites. Many ophiolites with “SSZ” compositions may have formed in a mid-ocean ridge setting such as the southeastern Indian Ocean.


2021 ◽  
Vol 17 (5) ◽  
pp. 1795-1818
Author(s):  
Camilla K. Crockart ◽  
Tessa R. Vance ◽  
Alexander D. Fraser ◽  
Nerilie J. Abram ◽  
Alison S. Criscitiello ◽  
...  

Abstract. Paleoclimate archives, such as high-resolution ice core records, provide a means to investigate past climate variability. Until recently, the Law Dome (Dome Summit South site) ice core record remained one of few millennial-length high-resolution coastal records in East Antarctica. A new ice core drilled in 2017/2018 at Mount Brown South, approximately 1000 km west of Law Dome, provides an additional high-resolution record that will likely span the last millennium in the Indian Ocean sector of East Antarctica. Here, we compare snow accumulation rates and sea salt concentrations in the upper portion (∼ 20 m) of three Mount Brown South ice cores and an updated Law Dome record over the period 1975–2016. Annual sea salt concentrations from the Mount Brown South site record preserve a stronger signal for the El Niño–Southern Oscillation (ENSO; austral winter and spring, r = 0.533, p < 0.001, Multivariate El Niño Index) compared to a previously defined Law Dome record of summer sea salt concentrations (November–February, r = 0.398, p = 0.010, Southern Oscillation Index). The Mount Brown South site record and Law Dome record preserve inverse signals for the ENSO, possibly due to longitudinal variability in meridional transport in the southern Indian Ocean, although further analysis is needed to confirm this. We suggest that ENSO-related sea surface temperature anomalies in the equatorial Pacific drive atmospheric teleconnections in the southern mid-latitudes. These anomalies are associated with a weakening (strengthening) of regional westerly winds to the north of Mount Brown South that correspond to years of low (high) sea salt deposition at Mount Brown South during La Niña (El Niño) events. The extended Mount Brown South annual sea salt record (when complete) may offer a new proxy record for reconstructions of the ENSO over the recent millennium, along with improved understanding of regional atmospheric variability in the southern Indian Ocean, in addition to that derived from Law Dome.


2021 ◽  
Vol 13 (14) ◽  
pp. 2669
Author(s):  
Sandipan Mondal ◽  
Ali Haghi Vayghan ◽  
Ming-An Lee ◽  
Yi-Chen Wang ◽  
Bambang Semedi

In the current study, remotely sensed sea surface ocean temperature (SST) and sea surface chlorophyll (SSC), an indicator of tuna abundance, were used to determine the optimal feeding habitat zone of the southern Indian Ocean (SIO) albacore using a habitat suitability model applied to the 2000–2016 Taiwanese longline fishery data. The analysis showed a stronger correlation between the 2-month lag SSC and standardized catch per unit effort (CPUE) than 0-, 1-, 3-, and 4-month lag SSC. SST also exhibited a stronger correlation with standardized CPUE. Therefore, SST and SSC_2 were selected as final variables for model construction. An arithmetic mean model with SST and SSC_2 was deemed suitable to predict the albacore feeding habitat zone in the SIO. The preferred ranges of SSC_2 and SST for the feeding habitat of immature albacore were 0.07–0.09 mgm−3 and 16.5–18.5 °C, respectively, and mainly centralized at 17.5 °C SST and 0.08 mgm−3 SSC_2. The selected habitat suitability index model displayed a high correlation (R2 = 0.8276) with standardized CPUE. Overall, temperature and ocean chlorophyll were found to be essential for albacore habitat formation in the SIO, consistent with previous studies. The results of this study can contribute to ecosystem-based fisheries management in the SIO by providing insights into the habitat preference of immature albacore tuna in the SIO.


2021 ◽  
Vol 18 (12) ◽  
pp. 3733-3749
Author(s):  
Cora Hörstmann ◽  
Eric J. Raes ◽  
Pier Luigi Buttigieg ◽  
Claire Lo Monaco ◽  
Uwe John ◽  
...  

Abstract. Biogeochemical cycling of carbon (C) and nitrogen (N) in the ocean depends on both the composition and activity of underlying biological communities and on abiotic factors. The Southern Ocean is encircled by a series of strong currents and fronts, providing a barrier to microbial dispersion into adjacent oligotrophic gyres. Our study region straddles the boundary between the nutrient-rich Southern Ocean and the adjacent oligotrophic gyre of the southern Indian Ocean, providing an ideal region to study changes in microbial productivity. Here, we measured the impact of C and N uptake on microbial community diversity, contextualized by hydrographic factors and local physico-chemical conditions across the Southern Ocean and southern Indian Ocean. We observed that contrasting physico-chemical characteristics led to unique microbial diversity patterns, with significant correlations between microbial alpha diversity and primary productivity (PP). However, we detected no link between specific PP (PP normalized by chlorophyll-a concentration) and microbial alpha and beta diversity. Prokaryotic alpha and beta diversity were correlated with biological N2 fixation, which is itself a prokaryotic process, and we detected measurable N2 fixation to 60∘ S. While regional water masses have distinct microbial genetic fingerprints in both the eukaryotic and prokaryotic fractions, PP and N2 fixation vary more gradually and regionally. This suggests that microbial phylogenetic diversity is more strongly bounded by physical oceanographic features, while microbial activity responds more to chemical factors. We conclude that concomitant assessments of microbial diversity and activity are central to understanding the dynamics and complex responses of microorganisms to a changing ocean environment.


Sign in / Sign up

Export Citation Format

Share Document