Supplementary material to "Anomalies in the Carbonate System of Red Sea Coastal Habitats"

Author(s):  
Kimberlee Baldry ◽  
Vincent Saderne ◽  
Daniel C. McCorkle ◽  
James H. Churchill ◽  
Susana Agusti ◽  
...  
2020 ◽  
Vol 17 (2) ◽  
pp. 423-439
Author(s):  
Kimberlee Baldry ◽  
Vincent Saderne ◽  
Daniel C. McCorkle ◽  
James H. Churchill ◽  
Susana Agusti ◽  
...  

Abstract. We use observations of dissolved inorganic carbon (DIC) and total alkalinity (TA) to assess the impact of ecosystem metabolic processes on coastal waters of the eastern Red Sea. A simple, single-end-member mixing model is used to account for the influence of mixing with offshore waters and evaporation–precipitation and to model ecosystem-driven perturbations on the carbonate system chemistry of coral reefs, seagrass meadows and mangrove forests. We find that (1) along-shelf changes in TA and DIC exhibit strong linear relationships that are consistent with basin-scale net calcium carbonate precipitation; (2) ecosystem-driven changes in TA and DIC are larger than offshore variations in >70 % of sampled seagrass meadows and mangrove forests, changes which are influenced by a combination of longer water residence times and community metabolic rates; and (3) the sampled mangrove forests show strong and consistent contributions from both organic respiration and other sedimentary processes (carbonate dissolution and secondary redox processes), while seagrass meadows display more variability in the relative contributions of photosynthesis and other sedimentary processes (carbonate precipitation and oxidative processes). The results of this study highlight the importance of resolving the influences of water residence times, mixing and upstream habitats on mediating the carbonate system and coastal air–sea carbon dioxide fluxes over coastal habitats in the Red Sea.


2021 ◽  
pp. jgs2021-027
Author(s):  
Valeria Boyko ◽  
Jürgen Pätzold ◽  
Alexey Kamyshny

High fluxes of iron minerals associated with aeolian dry deposition may result in anomalously high reactive iron content and fast reoxidation of hydrogen sulphide in the sediments that prevents pyrite formation and results in “cryptic” sulphur cycle. In this work, we studied cycling of iron and sulphur in the deep-water (> 800 m water depth) sediments of the Red Sea and its northern extension, Gulf of Aqaba. We found that reactive iron content in the surface sediments of the Gulf of Aqaba and the Red Sea is high, while the content of sulphur-bound iron is very low and decreases with water depth. The presence of pyrite traces and zero-valent sulfur as well as isotopic compositions of sulphate and pyrite, which are consistent with sulphate reduction under substrate-limiting conditions, suggest that cryptic sulfur cycling is likely to be a result of fast reoxidation of hydrogen sulfide rather than microbial sulfate reduction suppression. In the sediments of Shaban Deep, which are overlain with hyper-saline hydrothermal brine, low reactive iron and high organic carbon contents result in a non-cryptic sulphur cycle characterized by preservation of pyrite in the sediments.Thematic collection: This article is part of the Sulfur in the Earth system collection available at: https://www.lyellcollection.org/cc/sulfur-in-the-earth-systemSupplementary material:https://doi.org/10.6084/m9.figshare.c.5508155


2019 ◽  
Author(s):  
Kimberlee Baldry ◽  
Vincent Saderne ◽  
Daniel C. McCorkle ◽  
James H. Churchill ◽  
Susana Agusti ◽  
...  

Abstract. We use observations of dissolved inorganic carbon (DIC) and total alkalinity (TA) to assess the impact of ecosystem metabolic processes on coastal waters of the eastern Red Sea. A simple, single-end-member mixing model is used to account for the influence of mixing with offshore waters and evaporation/precipitation, and to model ecosystem-driven perturbations on the carbonate system chemistry of coral reefs, seagrass meadows and mangrove forests. We find that (1) along-shelf changes in TA and DIC exhibit strong linear trends that are consistent with basin-scale net calcium carbonate precipitation; (2) ecosystem-driven changes in TA and DIC are larger than offshore variations in > 85 % of sampled seagrass meadows and mangrove forests, changes which are influenced by a combination of longer water residence times and community metabolic rates; and (3) the sampled mangrove forests show strong and consistent contributions from both organic respiration and other sedimentary processes (carbonate dissolution and secondary redox processes), while seagrass meadows display more variability in the relative contributions of photosynthesis and other sedimentary processes (carbonate precipitation and oxidative processes).


2018 ◽  
Author(s):  
Nancy G. Prouty ◽  
Kimberly K. Yates ◽  
Nathan Smiley ◽  
Chris Gallagher ◽  
Olivia Cheriton ◽  
...  

2019 ◽  
Author(s):  
Taehee Na ◽  
Jeomshik Hwang ◽  
Soyun Kim ◽  
Seonghee Jeong ◽  
TaeKeun Rho ◽  
...  

2019 ◽  
Author(s):  
Susann Rossbach ◽  
Vincent Saderne ◽  
Andrea Anton ◽  
Carlos M. Duarte

Sign in / Sign up

Export Citation Format

Share Document