Iron and sulphur speciation and cycling in the sediments of marine systems located in the arid environment: Case of the northern Red Sea

2021 ◽  
pp. jgs2021-027
Author(s):  
Valeria Boyko ◽  
Jürgen Pätzold ◽  
Alexey Kamyshny

High fluxes of iron minerals associated with aeolian dry deposition may result in anomalously high reactive iron content and fast reoxidation of hydrogen sulphide in the sediments that prevents pyrite formation and results in “cryptic” sulphur cycle. In this work, we studied cycling of iron and sulphur in the deep-water (> 800 m water depth) sediments of the Red Sea and its northern extension, Gulf of Aqaba. We found that reactive iron content in the surface sediments of the Gulf of Aqaba and the Red Sea is high, while the content of sulphur-bound iron is very low and decreases with water depth. The presence of pyrite traces and zero-valent sulfur as well as isotopic compositions of sulphate and pyrite, which are consistent with sulphate reduction under substrate-limiting conditions, suggest that cryptic sulfur cycling is likely to be a result of fast reoxidation of hydrogen sulfide rather than microbial sulfate reduction suppression. In the sediments of Shaban Deep, which are overlain with hyper-saline hydrothermal brine, low reactive iron and high organic carbon contents result in a non-cryptic sulphur cycle characterized by preservation of pyrite in the sediments.Thematic collection: This article is part of the Sulfur in the Earth system collection available at: https://www.lyellcollection.org/cc/sulfur-in-the-earth-systemSupplementary material:https://doi.org/10.6084/m9.figshare.c.5508155

2021 ◽  
pp. jgs2021-081
Author(s):  
Huan Cui ◽  
Alan J. Kaufman ◽  
Shuhai Xiao ◽  
Chuanming Zhou ◽  
Maoyan Zhu ◽  
...  

Compared with Phanerozoic strata, sulfate minerals are relatively rare in the Precambrian record likely due to the lower concentrations of sulfate in dominantly anoxic oceans. Here, we present a compilation of sulfate minerals that are stratigraphically associated with the Ediacaran Shuram excursion (SE) — the largest negative δ13C excursion in Earth history. We evaluated 15 SE sections, all of which reveal the presence of sulfate minerals and/or concentration enrichment in carbonate-associated sulfate, suggesting a rise in sulfate reservoir. Notably, where data are available, the SE also reveals considerable enrichments in [Ba] relative to pre- and post-SE intervals. We propose that elevated seawater sulfate concentrations during the SE may have faciliated authigenesis of sulfate minerals. At the same time, the rise of Ba concentrations in shelf environments further facilitated barite deposition. A larger sulfate reservoir would stimulate microbial sulfate reduction and anaerobic oxidation of organic matter (including methane), contributing to the genesis of the SE. The existence of sulfate minerals throughout the SE suggests that oxidant pools were not depleted at that time, which challenges previous modelling results. Our study highlights the dynamic interplay of biogeochemical C, S, and Ba cycles in response to the Shuram oxygenation event.Thematic collection: This article is part of the Sulfur in the Earth system collection available at: https://www.lyellcollection.org/cc/sulfur-in-the-earth-systemSupplementary material:https://doi.org/10.6084/m9.figshare.c.5602560


Author(s):  
Philip J Rasch ◽  
Simone Tilmes ◽  
Richard P Turco ◽  
Alan Robock ◽  
Luke Oman ◽  
...  

We provide an overview of geoengineering by stratospheric sulphate aerosols. The state of understanding about this topic as of early 2008 is reviewed, summarizing the past 30 years of work in the area, highlighting some very recent studies using climate models, and discussing methods used to deliver sulphur species to the stratosphere. The studies reviewed here suggest that sulphate aerosols can counteract the globally averaged temperature increase associated with increasing greenhouse gases, and reduce changes to some other components of the Earth system. There are likely to be remaining regional climate changes after geoengineering, with some regions experiencing significant changes in temperature or precipitation. The aerosols also serve as surfaces for heterogeneous chemistry resulting in increased ozone depletion. The delivery of sulphur species to the stratosphere in a way that will produce particles of the right size is shown to be a complex and potentially very difficult task. Two simple delivery scenarios are explored, but similar exercises will be needed for other suggested delivery mechanisms. While the introduction of the geoengineering source of sulphate aerosol will perturb the sulphur cycle of the stratosphere signicantly, it is a small perturbation to the total (stratosphere and troposphere) sulphur cycle. The geoengineering source would thus be a small contributor to the total global source of ‘acid rain’ that could be compensated for through improved pollution control of anthropogenic tropospheric sources. Some areas of research remain unexplored. Although ozone may be depleted, with a consequent increase to solar ultraviolet-B (UVB) energy reaching the surface and a potential impact on health and biological populations, the aerosols will also scatter and attenuate this part of the energy spectrum, and this may compensate the UVB enhancement associated with ozone depletion. The aerosol will also change the ratio of diffuse to direct energy reaching the surface, and this may influence ecosystems. The impact of geoengineering on these components of the Earth system has not yet been studied. Representations for the formation, evolution and removal of aerosol and distribution of particle size are still very crude, and more work will be needed to gain confidence in our understanding of the deliberate production of this class of aerosols and their role in the climate system.


2021 ◽  
Author(s):  
Catherine Hardacre ◽  
Jane P. Mulcahy ◽  
Richard Pope ◽  
Can Li ◽  
Steve Rumbold ◽  
...  

<div> <p>UKESM1 is the latest generation Earth system model to be developed in the UK. It simulates the core physical and dynamical processes of land, atmosphere, ocean and sea ice systems which are extended to incorporate key marine and terrestrial biogeochemical cycles. These include the carbon and nitrogen cycles and interactive stratosphere-troposphere trace gas chemistry. Feedbacks between these components that have an important amplifying or dampening effect on the physical climate, and/or change themselves in response to changes in the physical climate are also included. One focus for the future development of UKESM1 is improved treatment of sulphur processes, including emission, chemical processing and deposition in the aerosol-chemistry scheme, UKCA-Mode. These processes span land-atmosphere and ocean-atmosphere boundaries and can therefore impact feedbacks between these systems. Emissions of SO2 can be oxidised to form sulphate aerosol, which plays a key role in both acid deposition, atmospheric aerosol loading and cloud properties, thereby directly contributing to the Earth’s radiative balance. Good representation of sulphur processes in UKESM1 is therefore essential for constraining uncertainties associated with the impacts of aerosols on the Earth system and thus understanding the global climate. Here we challenge UKESM1 with observations of SO2 and sulphate from ground-based measurement networks in Europe and the USA, and of SO2 from the Ozone Monitoring Instrument (OMI). We use these to evaluate temporal and spatial biases in the model’s simulation of SO2 and sulphate.  </p> </div><div> <p>We find that UKESM1 captures the historical trend for decreasing concentrations of atmospheric SO2 and sulphate in both Europe and the USA over the period 1987 to 2014. However, in the polluted regions of the Eastern USA and Europe, UKESM1 over-predicts surface SO2 concentrations by an average of 320-340%, while under-predicting surface sulphate concentrations by 25-35%. In the cleaner Western USA, the model over-predicts both surface SO2 and sulphate concentrations by 1200% and 150% respectively. The variability in the direction of UKESM1’s bias according to species and region suggests that the model bias may be driven differently depending on species and region. These drivers likely result from uncertainty in aspects of the sulphur cycle, including SO2 emission, loss processes (oxidation and deposition) or transport. To evaluate UKESM1 at the global scale we use a newly available data product for total column SO2 (TCSO2) from OMI. We find that UKESM1 over-predicts TCSO2 over much of the globe, particularly the large source regions of India, China, the USA and Europe as well as over background regions, including much of the ocean. </p> </div><div> <p>In this study we also assess changes to UKESM1’s SO2 dry deposition parameterization. These changes increase SO2 dry deposition to land and ocean surfaces, thus reducing atmospheric SO2 and sulphate concentrations, and ultimately reducing cold bias in UKESM1's simulation of mid 20th C global mean surface temperatures. In comparison with the ground based and satellite observations, we find that the changes reduce UKESM1's over prediction of surface SO2 concentrations and TCSO2</p> </div>


Sign in / Sign up

Export Citation Format

Share Document