scholarly journals Reviewer comments on "Cryptic role of tetrathionate in the sulfur cycle..."

2019 ◽  
Author(s):  
Anonymous
Keyword(s):  
2020 ◽  
Author(s):  
Emily Hyde ◽  
◽  
Cody Sheik ◽  
Sergei Katsev ◽  
Madelyn Petersen ◽  
...  

1985 ◽  
Vol 90 (C5) ◽  
pp. 9168 ◽  
Author(s):  
Timothy S. Bates ◽  
Joel D. Cline
Keyword(s):  

2019 ◽  
Author(s):  
Subhrangshu Mandal ◽  
Sabyasachi Bhattacharya ◽  
Chayan Roy ◽  
Moidu Jameela Rameez ◽  
Jagannath Sarkar ◽  
...  

ABSTRACTTo explore the potential role of tetrathionate in the sulfur cycle of marine sediments, the population ecology of tetrathionate-forming, oxidizing, and respiring microorganisms was revealed at 15-30 cm resolution along two, ∼3-m-long, cores collected from 530- and 580-mbsl water-depths of Arabian Sea, off India’s west coast, within the oxygen minimum zone (OMZ). Metagenome analysis along the two sediment-cores revealed widespread occurrence of the structural genes that govern these metabolisms; high diversity and relative-abundance was also detected for the bacteria known to render these processes. Slurry-incubation of the sediment-samples, pure-culture isolation, and metatranscriptome analysis, corroborated thein situfunctionality of all the three metabolic-types. Geochemical analyses revealed thiosulfate (0-11.1 μM), pyrite (0.05-1.09 wt %), iron (9232-17234 ppm) and manganese (71-172 ppm) along the two sediment-cores. Pyrites (via abiotic reaction with MnO2) and thiosulfate (via oxidation by chemolithotrophic bacteria prevalentin situ) are apparently the main sources of tetrathionate in this ecosystem. Tetrathionate, in turn, can be either converted to sulfate (via oxidation by the chemolithotrophs present) or reduced back to thiosulfate (via respiration by native bacteria); 0-2.01 mM sulfide present in the sediment-cores may also reduce tetrathionate abiotically to thiosulfate and elemental sulfur. Notably tetrathionate was not detectedin situ- high microbiological and geochemical reactivity of this polythionate is apparently instrumental in the cryptic nature of its potential role as a central sulfur cycle intermediate. Biogeochemical roles of this polythionate, albeit revealed here in the context of OMZ sediments, may well extend to the sulfur cycles of other geomicrobiologically-distinct marine sediment horizons.


2019 ◽  
Author(s):  
Subhrangshu Mandal ◽  
Sabyasachi Bhattacharya ◽  
Chayan Roy ◽  
Moidu Jameela Rameez ◽  
Jagannath Sarkar ◽  
...  

Abstract. To explore the potential role of tetrathionate in the sulfur cycle of marine sediments, the population ecology of tetrathionate-forming, oxidizing, and respiring microorganisms was revealed at 15–30 cm resolution along two, ~ 3-m-long, cores collected from 530- and 580-mbsl water-depths of Arabian Sea, off India’s west coast, within the oxygen minimum zone (OMZ). Metagenome analysis along the two sediment-cores revealed widespread occurrence of the structural genes that govern these metabolisms; high diversity and relative-abundance was also detected for the bacteria known to render these processes. Slurry-incubation of the sediment-samples, pure-culture isolation, and metatranscriptome analysis, corroborated the in situ functionality of all the three metabolic-types. Geochemical analyses revealed thiosulfate (0–11.1 µM), pyrite (0.05–1.09 wt %), iron (9232–17234 ppm) and manganese (71–172 ppm) along the two sediment-cores. Pyrites (via abiotic reaction with MnO2) and thiosulfate (via oxidation by chemolithotrophic bacteria prevalent in situ) are apparently the main sources of tetrathionate in this ecosystem. Tetrathionate, in turn, can be either converted to sulfate (via oxidation by the chemolithotrophs present) or reduced back to thiosulfate (via respiration by native bacteria); 0–2.01 mM sulfide present in the sediment-cores may also reduce tetrathionate abiotically to thiosulfate and elemental sulfur. Notably tetrathionate was not detected in situ – high microbiological and geochemical reactivity of this polythionate is apparently instrumental in the cryptic nature of its potential role as a central sulfur cycle intermediate. Biogeochemical roles of this polythionate, albeit revealed here in the context of OMZ sediments, may well extend to the sulfur cycles of other geomicrobiologically-distinct marine sediment horizons.


2019 ◽  
Author(s):  
Kshitij Tandon ◽  
Pei-Wen Chiang ◽  
Chih-Ying Lu ◽  
Naohisa Wada ◽  
Shan-Hua Yang ◽  
...  

AbstractDominant coral-associated Endozoicomonas bacteria species are hypothesized to play a role in the coral-sulfur cycle by metabolizing Dimethylsulfoniopropionate (DMSP) into Dimethylsulfide (DMS); however, no sequenced genome to date harbors genes for this process. In this study, we assembled high-quality (>95% complete) genomes of strains of a recently added species Endozoicomonas acroporae (Acr-14T, Acr-1 and Acr-5) isolated from the coral Acropora muricata and performed comparative genomic analysis on genus Endozoicomonas. We identified the first DMSP CoA-transferase/lyase—a dddD gene homolog found in all E. acroporae strains—and functionally characterized bacteria capable of metabolizing DMSP into DMS via the DddD cleavage pathway using RT-qPCR and gas chromatography (GC). Furthermore, we demonstrated that E. acroporae strains can use DMSP as the sole carbon source and have genes arranged in an operon-like manner to link DMSP metabolism to the central carbon cycle. This study confirms the role of Endozoicomonas in the coral sulfur cycle.


1999 ◽  
Vol 73 (1) ◽  
pp. 35-44 ◽  
Author(s):  
Masae HORINOUCHI ◽  
Hideaki NOJIRI ◽  
Hisakazu YAMANE ◽  
Toshio OMORI

2020 ◽  
Author(s):  
Nathalie Gypens ◽  
Stéphane Roberty ◽  
Alberto V. Borges ◽  
Pierre Cardol ◽  
Colin Royer

<p>Dimethylsulfonopropionate (DMSP) and dimethylsulfoxide (DMSO) are two compounds involved in the carbon and sulfur cycle and are the precursors of the climate cooling gas dimethylsulfide (DMS). Despite decades of research, their role as osmoregulator, cryoprotector or antioxidant within the phytoplankton cells remains uncertain in some part. Since the antioxidant cascade system from the DMSP reported by Sunda & al. (2002), more investigation need to be conducted to confirm or accurate these interactions. This study aims to improve the knowledge about DMSP and DMSO and their hypothetic role of antioxidant on three different classes of phytoplankton (Dinophyceae – Prymnesiophyceae – diatom) and one diatom no-DMSP producer Chaetoceros sp. as negative control. Laboratory cultures were submitted to three oxidative stress to produce Reactive Oxygen Species (ROS) with (1) increasing light intensity from 100 to 600 and up to 1200 µmole/m²s for a global and natural oxidative stress; (2) using the menadone bisulfite (MSB) to generate ·O<sub>2</sub> and (3) using 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) to inhibit the photosystem II (PSII). The PSII activity, the Chlorophyll a concentration (Chl a), the lipidic peroxidation (LOP), the ROS production and the pigment variation were analysed after 6h of incubation and related to the evolution of the DMSP and DMSO concentrations to better understand the cellular oxidative stress and its impact on the phytoplankton cell and DMSP and DMSO production.</p>


Sign in / Sign up

Export Citation Format

Share Document