scholarly journals Particulate organic carbon budget of the Gulf of Lion shelf (NW Mediterranean) using a coupled hydrodynamic-biogeochemical model

2021 ◽  
Author(s):  
Gaël Many ◽  
Caroline Ulses ◽  
Claude Estournel ◽  
Patrick Marsaleix

Abstract. The Gulf of Lion shelf (NW Mediterranean) is one of the most productive areas in the Mediterranean Sea. A 3D coupled hydrodynamic-biogeochemical model is used to study the mechanisms that drive the particulate organic carbon (POC) budget over the shelf. A set of observations, including temporal series from a coastal station, remote sensing of surface chlorophyll-a, and a glider deployment, is used to validate the distribution of physical and biogeochemical variables from the model. The model reproduces well the time and spatial evolution of temperature, chlorophyll, and nitrate concentrations and shows a clear annual cycle of gross primary production and respiration. Knowing the physical and biogeochemical inputs and outputs terms, the annual budget of the POC in the Gulf of Lion is estimated and discussed. We estimate an annual net primary production of ~200 104 tC yr−1 at the scale of the shelf. The primary production is marked by a coast-slope increase with maximal values in the eastern region. Our results show that the primary production is favored by the inputs of nutrients imported from offshore waters, representing 3 and 15 times the inputs of the Rhône in terms of nitrate and phosphate. Besides, the EOFs decomposition highlights the role of solar radiation anomalies and continental winds that favor upwellings, and inputs of the Rhône River, on annual changes in the net primary production. Annual POC deposition (19 104 tC yr−1) represents 10 % of the net primary production. The delivery of terrestrial POC favored the deposition in front of the Rhône mouth and the mean cyclonic circulation increases the deposition between 30 and 50 m depth from the Rhône prodelta to the west. Mechanisms responsible for POC export (24 104 tC yr−1) to the open sea are discussed. The export off the shelf in the western part, from the Cap de Creus to the Lacaze-Duthiers canyon, represented 37 % of the total POC export. Maximum values were obtained during shelf dense water cascading events and marine winds. Considering surface waters only, the POC was mainly exported in the eastern part of the shelf through shelf waters and Rhône inputs, which spread to the Northern Current during favorable continental wind conditions. The Gulf of Lion shelf appears as an autotrophic ecosystem with a positive Net Ecosystem Production and as a source of POC for the adjacent NW Mediterranean basin. The undergoing and future increase in temperature and stratification induced by climate change could impact the trophic status of the GoL shelf and the carbon export towards the deep basin. It is crucial to develop models to predict and assess these future evolutions.

2021 ◽  
Vol 18 (19) ◽  
pp. 5513-5538
Author(s):  
Gaël Many ◽  
Caroline Ulses ◽  
Claude Estournel ◽  
Patrick Marsaleix

Abstract. The Gulf of Lion shelf (GoL, NW Mediterranean) is one of the most productive areas in the Mediterranean Sea. A 3D coupled hydrodynamic–biogeochemical model is used to study the mechanisms that drive the particulate organic carbon (POC) dynamics over the shelf. A set of observations, including temporal series from a coastal station, remote sensing of surface chlorophyll a, and a glider deployment, is used to validate the distribution of physical and biogeochemical variables from the model. The model reproduces the time and spatial evolution of temperature, chlorophyll a, and nitrate concentrations well and shows a clear annual cycle of gross primary production and respiration. We estimate an annual net primary production of ∼ 200 × 104 t C yr−1 at the scale of the shelf. The primary production is marked by a coast-slope increase with maximal values in the eastern region. Our results show that the primary production is favoured by the inputs of nutrients imported from offshore waters, representing 3 and 15 times the inputs of the Rhône in terms of nitrate and phosphate. In addition, the empirical orthogonal function (EOF) decomposition highlights the role of solar radiation anomalies and continental winds that favour upwellings, and inputs of the Rhône River, in annual changes in the net primary production. Annual POC deposition (27 × 104 t C yr−1) represents 13 % of the net primary production. The delivery of terrestrial POC favours the deposition in front of the Rhône mouth, and the mean cyclonic circulation increases the deposition between 30 and 50 m depth from the Rhône prodelta to the west. Mechanisms responsible for POC export (24 × 104 t C yr−1) to the open sea are discussed. The export off the shelf in the western part, from the Cap de Creus to the Lacaze-Duthiers canyon, represents 37 % of the total POC export. Maximum values are obtained during shelf dense water cascading events and marine winds. Considering surface waters only, the POC is mainly exported in the eastern part of the shelf through shelf waters and Rhône inputs, which spread to the Northern Current during favourable continental wind conditions. The GoL shelf appears as an autotrophic ecosystem with a positive net ecosystem production and as a source of POC for the adjacent NW Mediterranean basin. The undergoing and future increase in temperature and stratification induced by climate change could impact the trophic status of the GoL shelf and the carbon export towards the deep basin. It is crucial to develop models to predict and assess these future evolutions.


2020 ◽  
Vol 8 (10) ◽  
pp. 767 ◽  
Author(s):  
Daniel M. Alongi

Mangroves and salt marshes are among the most productive ecosystems in the global coastal ocean. Mangroves store more carbon (739 Mg CORG ha−1) than salt marshes (334 Mg CORG ha−1), but the latter sequester proportionally more (24%) net primary production (NPP) than mangroves (12%). Mangroves exhibit greater rates of gross primary production (GPP), aboveground net primary production (AGNPP) and plant respiration (RC), with higher PGPP/RC ratios, but salt marshes exhibit greater rates of below-ground NPP (BGNPP). Mangroves have greater rates of subsurface DIC production and, unlike salt marshes, exhibit active microbial decomposition to a soil depth of 1 m. Salt marshes release more CH4 from soil and creek waters and export more dissolved CH4, but mangroves release more CO2 from tidal waters and export greater amounts of particulate organic carbon (POC), dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC), to adjacent waters. Both ecosystems contribute only a small proportion of GPP, RE (ecosystem respiration) and NEP (net ecosystem production) to the global coastal ocean due to their small global area, but contribute 72% of air–sea CO2 exchange of the world’s wetlands and estuaries and contribute 34% of DIC export and 17% of DOC + POC export to the world’s coastal ocean. Thus, both wetland ecosystems contribute disproportionately to carbon flow of the global coastal ocean.


2018 ◽  
Vol 43 (12) ◽  
pp. 2495-2509 ◽  
Author(s):  
Yoann Copard ◽  
Frédérique Eyrolle ◽  
Olivier Radakovitch ◽  
Alain Poirel ◽  
Patrick Raimbault ◽  
...  

2021 ◽  
Author(s):  
Zhuonan Wang ◽  
Hanqin Tian ◽  
Shufen Pan ◽  
Hao Shi ◽  
Jia Yang ◽  
...  

<p>Tropical rainforests play an important role in sequestering carbon (C) and mitigating climate warming. Many terrestrial biosphere models (TBMs) estimate productivity increase in tropical rainforests due to the CO<sub>2</sub> fertilization effect. However, most TBMs neglect phosphorus (P) limitation on tropical rainforest productivity. Here, we used a process-based Dynamic Land Ecosystem Model with coupled C-N-P dynamics (DLEM-CNP) with varied V<sub>cmax­25 </sub>to examine how P limitation has affected C fluxes of tropical rainforests to environmental and anthropogenic factors, including N deposition, land-use changes, climate variability, and atmospheric CO<sub>2</sub>, during 1860-2018. The model results showed that consideration of the P cycle reduced the response of tropical rainforests gross primary production (GPP) by 25% and 39%, net primary production (NPP) by 25% and 43%, and net ecosystem production (NEP) by 21% and 41% to the CO<sub>2</sub> fertilization effect relative to CN-only and C-only models. The DLEM-CNP estimated that the tropical rainforests had a GPP of 41.1 + 0.5 Pg C year<sup>-1</sup>, NPP of 19.7 + 0.3 Pg C year<sup>-1 </sup>and NEP of 0.44 + 0.34 Pg C year<sup>-1</sup> under 1860-2018 environmental conditions. Factorial experiments with DLEM-CNP suggested that deforestation has stronger impacts on GPP and NPP reduction compared to the enhanced GPP and NPP benefiting from the CO<sub>2</sub> fertilization effect. Additionally, tropical rainforests NEP showed a continuously increasing trend owing to the CO<sub>2</sub> fertilization effect. Our study highlights the importance of P limitation on the C cycle and the weakened CO<sub>2</sub> fertilization effect due to nutrients limitation in the tropical rainforests.</p>


2018 ◽  
Author(s):  
Yi Tang ◽  
Nolwenn Lemaitre ◽  
Maxi Castrillejo ◽  
Montserrat Roca-Martí ◽  
Pere Masqué ◽  
...  

Abstract. The disequilibrium between 210Po activity and 210Pb activity in seawater samples was determined along the GEOTRACES GA01 transect in the North Atlantic during the GEOVIDE cruise (May–June 2014). A steady-state model was used to quantify vertical export of particulate 210Po. The deficits of 210Po in the Iberian Basin and at the Greenland Shelf were strongly affected by vertical advection. Using the export flux of 210Po and the particulate organic carbon (POC) to 210Po ratio on total (> 1 µm) particles, we determined the POC export fluxes along the transect. Both the magnitude and efficiency of the estimated POC export flux from the surface ocean varied spatially within our study region. Export fluxes of POC ranged from negligible to 10 mmol C m−2 d−1, with enhanced POC export in the Labrador Sea. The cruise track was characterized by overall low POC export relative to net primary production (export efficiency 


Author(s):  
Robert Hall ◽  
Jennifer Tank ◽  
Michelle Baker ◽  
Emma Rosi-Marshall ◽  
Michael Grace ◽  
...  

Primary production and respiration are core functions of river ecosystems that in part determine the carbon balance. Gross primary production (GPP) is the total rate of carbon fixation by autotrophs such as algae and higher plants and is equivalent to photosynthesis. Ecosystem respiration (ER) measures rate at which organic carbon is mineralized to CO2 by all organisms in an ecosystem. Together these fluxes can indicate the base of the food web to support animal production (Marcarelli et al. 2011), can predict the cycling of other elements (Hall and Tank 2003), and can link ecosystems to global carbon cycling (Cole et al. 2007).


Sign in / Sign up

Export Citation Format

Share Document