scholarly journals Effects of dust deposition on iron cycle in the surface Mediterranean Sea: results from a mesocosm seeding experiment

2010 ◽  
Vol 7 (11) ◽  
pp. 3769-3781 ◽  
Author(s):  
T. Wagener ◽  
C. Guieu ◽  
N. Leblond

Abstract. Soil dust deposition is recognized as a major source of iron to the open ocean at global and regional scales. However, the processes that control the speciation and cycle of iron in the surface ocean after dust deposition are poorly documented mainly due to the logistical difficulties to investigate in-situ, natural dust events. The development of clean mesocosms in the frame of the DUNE project (a DUst experiment in a low Nutrient low chlorophyll Ecosystem) was a unique opportunity to investigate these processes at the unexplored scale of one dust deposition event. During the DUNE-1-P mesocosm seeding experiment, iron stocks (dissolved and particulate concentrations in the water column) and fluxes (export of particulate iron in sediment traps) were followed during 8 days after an artificial dust seeding mimicking a wet deposition of 10 g m−2. The addition of dust at the surface of the mesocosms was immediately followed by a decrease of dissolved iron [dFe] concentration in the 0–10 m water column. This decrease was likely due to dFe scavenging on settling dust particles and mineral organic aggregates. The scavenging ratio of dissolved iron on dust particles averaged 0.37 ± 0.12 nmol mg−1. Batch dissolution experiments conducted in parallel to the mesocosm experiment showed a increase (up to 600%) in dust iron dissolution capacity in dust-fertilized waters compared to control conditions. This study gives evidences of complex and unexpected effects of dust deposition on surface ocean biogeochemistry: (1) large dust deposition events may be a sink for surface ocean dissolved iron and (2) successive dust deposition events may induce different biogeochemical responses in the surface ocean.

2010 ◽  
Vol 7 (2) ◽  
pp. 2799-2830 ◽  
Author(s):  
T. Wagener ◽  
C. Guieu ◽  
N. Leblond

Abstract. Soil dust deposition is recognized as a major source of iron to the open ocean at global and regional scales. However, the processes that control the speciation and cycle of iron in the surface ocean after dust deposition are poorly documented mainly due to the logistical difficulties to investigate in-situ, natural dust events. The development of clean mesocosms in the frame of the DUNE project (a DUst experiment in a low Nutrient low chlorophyll Ecosystem) was a unique opportunity to investigate these processes at the unexplored scale of one dust deposition event. During the DUNE1 mesocosm seeding experiment, iron stocks (dissolved and particulate concentrations in the water column) and fluxes (export of particulate iron in sediment traps) were followed during 8 days after an artificial dust seeding mimicking a wet deposition of 10 g m−2. The addition of dust at the surface of the mesocosms was immediately followed by a decrease of dissolved iron [dFe] concentration in the 0–10 m water column. This decrease was likely due to dFe scavenging on settling dust particles and mineral organic aggregates. The scavenging ratio of dissolved iron on dust particles averaged 0.37 ± 0.12 nmol mg−1. Batch dissolution experiments conducted in parallel to the mesocosm experiment showed a increase (up to 600%) in dust iron dissolution capacity in dust-fertilized waters compared to control conditions. This study gives evidences of complex and unexpected effects of dust deposition on surface ocean biogeochemistry: (1) large dust deposition events may be a sink for surface ocean dissolved iron and (2) successive dust deposition events may induce different biogeochemical responses in the surface ocean.


2014 ◽  
Vol 11 (19) ◽  
pp. 5581-5594 ◽  
Author(s):  
K. Desboeufs ◽  
N. Leblond ◽  
T. Wagener ◽  
E. Bon Nguyen ◽  
C. Guieu

Abstract. We report here the elemental composition of sinking particles in sediment traps and in the water column following four artificial dust seeding experiments (each representing a flux of 10 g m−2). Dry or wet dust deposition were simulated during two large mesocosms field campaigns that took place in the coastal water of Corsica (NW Mediterranean Sea) representative of oligotrophic conditions. The dust additions were carried out with fresh or artificially aged dust (i.e., enriched in nitrate and sulfate by mimicking cloud processing) for various biogeochemical conditions, enabling us to test the effect of these parameters on the chemical composition and settling of dust after deposition. The rates and mechanisms of total mass, particulate organic carbon (POC) and chemical elements (Al, Ba, Ca, Co, Cu, Fe, K, Li, Mg, Mn, Mo, N, Nd, P, S, Sr and Ti) transfer from the mesocosm surface to the sediment traps installed at the base of the mesocosms after dust deposition show that (1) 15% of the initial dust mass was dissolved in the water column in the first 24 h after seeding. Except for Ca, S and N, the elemental composition of dust particles was constant during their settling, showing the relevance of using interelemental ratios, such as Ti/Al as proxy of lithogenic fluxes. (2) Whatever the type of seeding (using fresh dust to simulate dry deposition or artificially aged dust to simulate wet deposition), the particulate phase both in the water column and in the sediment traps was dominated by dust particles. (3) Due to the high Ba content in dust, Ba/Al cannot be used as productivity proxy in the case of high dust input in the sediment traps. Instead, our data suggests that the ratio Co/Al could be a good productivity proxy in this case. (4) After 7 days, between 30 and 68% of added dust was still in suspension in the mesocosms. This difference in the dust settling was directly associated with a difference in POC export, since POC fluxes were highly correlated to dust lithogenic fluxes signifying a ballast effect of dust. The highest fraction of remaining dust in suspension in the mesocosm at the end of the experiment was found inversely correlated to Chl a increase. This suggests that the fertilizing effect of dust on autotrophs organisms, the ballast effect, and POC fluxes are strongly correlated. (5) Our data emphasize a typical mass ratio Lithogenic/POC fluxes around 30 which could be used as reference to estimate the POC export triggered by wet dust deposition event.


2014 ◽  
Vol 11 (3) ◽  
pp. 4909-4947 ◽  
Author(s):  
K. Desboeufs ◽  
N. Leblond ◽  
T. Wagener ◽  
E. B. Nguyen ◽  
C. Guieu

Abstract. We report here the elemental composition of sinking particles in sediment traps and in the water column following 4 artificial mineral dust seedings (representing a flux of 10 g m−2) in mesocosms, simulating dry or wet dust deposition into oligotrophic marine waters. These data were used to examine the rates and mechanisms of total mass, particulate organic carbon (POC) and elemental (Al, Ba, Ca, Co, Cu, Fe, K, Li, Mg, Mn, Mo, N, Nd, P, S, Sr and Ti) transfer from the surface to the sediment traps after dust deposition. The dust additions were carried out with fresh or artificially aged dust (i.e. enriched in nitrate and sulfate by mimicking cloud processing) for various biogeochemical conditions, enabling us to test the effect of these parameters on the chemical evolution and settling of dust after deposition. Whatever the type of seeding (using fresh dust to simulate dry deposition or artificially aged dust to simulate wet deposition), the dust was predominant in the particulate phase in the sediment traps at the bottom of mesocosms and within the water column during each experiment. 15% of initial dust mass was dissolved in the water column in the first 24 h after seeding. For artificially aged dust, this released fraction was mainly nitrate, sulfate and calcium and hence represented a significant source of new N for the marine biota. Except for Ca, S and N, the elemental composition of dust particles was constant during their settling, showing the relevance of using interelemental ratios, such as Ti/Al or Ba/Al as proxy of lithogenic fluxes or of productivity. After 7 days, between 30 and 68% of added dust was still in suspension in the mesocosms depending on the experiment. This difference in the dust settling was directly associated to a difference in POC export, since POC fluxes were highly correlated to dust lithogenic fluxes signifying a ballast effect of dust. The highest fraction of remaining dust in the mesocosm at the end of the experiment was found when the lowest chl a increase was observed, and inversely. This suggests a high interaction between a fertilizing effect of dust, a ballast effect, and POC fluxes. Our data emphasize a typical ratio Lithogenic/POC fluxes around 30 which could be used as reference to estimate the POC export triggered by wet dust deposition event. The elemental fluxes associated to the dust settling presented in this paper constitute also an original database on the export of atmospheric metals in a case of dry or wet dust deposition event.


2013 ◽  
Vol 10 (4) ◽  
pp. 2583-2600 ◽  
Author(s):  
K. Wuttig ◽  
T. Wagener ◽  
M. Bressac ◽  
A. Dammshäuser ◽  
P. Streu ◽  
...  

Abstract. The deposition of atmospheric dust is the primary process supplying trace elements abundant in crustal rocks (e.g. Al, Mn and Fe) to the surface ocean. Upon deposition, the residence time in surface waters for each of these elements differs according to their chemical speciation and biological utilization. Presently, however, the chemical and physical processes occurring after atmospheric deposition are poorly constrained, principally because of the difficulty in following natural dust events in situ. In the present work we examined the temporal changes in the biogeochemistry of crustal metals (in particular Al, Mn and Fe) after an artificial dust deposition event. The experiment was contained inside trace metal clean mesocosms (0–12.5 m depths) deployed in the surface waters of the northwestern Mediterranean, close to the coast of Corsica within the frame of the DUNE project (a DUst experiment in a low Nutrient, low chlorophyll Ecosystem). Two consecutive artificial dust deposition events, each mimicking a wet deposition of 10 g m−2 of dust, were performed during the course of this DUNE-2 experiment. The changes in dissolved manganese (Mn), iron (Fe) and aluminum (Al) concentrations were followed immediately after the seeding with dust and over the following week. The Mn, Fe and Al inventories and loss or dissolution rates were determined. The evolution of the inventories after the two consecutive additions of dust showed distinct behaviors for dissolved Mn, Al and Fe. Even though the mixing conditions differed from one seeding to the other, Mn and Al showed clear increases directly after both seedings due to dissolution processes. Three days after the dust additions, Al concentrations decreased as a consequence of scavenging on sinking particles. Al appeared to be highly affected by the concentrations of biogenic particles, with an order of magnitude difference in its loss rates related to the increase of biomass after the addition of dust. In the case of dissolved Fe, it appears that the first dust addition resulted in a decrease as it was scavenged by sinking dust particles, whereas the second seeding induced dissolution of Fe from the dust particles due to the excess Fe binding ligand concentrations present at that time. This difference, which might be related to a change in Fe binding ligand concentration in the mesocosms, highlights the complex processes that control the solubility of Fe. Based on the inventories at the mesocosm scale, the estimations of the fractional solubility of metals from dust particles in seawater were 1.44 ± 0.19% and 0.91 ± 0.83% for Al and 41 ± 9% and 27 ± 19% for Mn for the first and the second dust addition. These values are in good agreement with laboratory-based estimates. For Fe no fractional solubility was obtained after the first seeding, but 0.12 ± 0.03% was estimated after the second seeding. Overall, the trace metal dataset presented here makes a significant contribution to enhancing our knowledge on the processes influencing trace metal release from Saharan dust and the subsequent processes of bio-uptake and scavenging in a low nutrient, low chlorophyll area.


2012 ◽  
Vol 9 (10) ◽  
pp. 13857-13897 ◽  
Author(s):  
K. Wuttig ◽  
T. Wagener ◽  
M. Bressac ◽  
A. Dammshäuser ◽  
P. Streu ◽  
...  

Abstract. The deposition of atmospheric dust is the primary process supplying trace elements abundant in crustal rocks (e.g. Al, Mn and Fe) to the surface ocean. Upon deposition, the residence time in surface waters for each of these elements differs according to their chemical speciation and biological utilization. Presently however their behavior after atmospheric deposition is poorly constrained, principally because of the difficulty in following natural dust events in-situ. In the present work we examined the temporal changes in the biogeochemistry of crustal metals (in particular Al, Mn and Fe) after an artificial dust deposition event. The experiment was contained inside trace metal clean mesocosms (0–12.5 m depths) deployed in the surface waters of the Northwestern Mediterranean, close to the coast of Corsica in the frame of the DUNE project (a DUst experiment in a low Nutrient low chlorophyll Ecosystem). Two consecutive artificial dust deposition events, each mimicking a wet deposition of 10 g m−2 of dust, were performed during the course of this DUNE-2 experiment. The changes in dissolved manganese (dMn), iron (dFe) and aluminium (dAl) concentrations were followed immediately and over the following week and their inventories and loss or dissolution rates were determined. The evolution of the inventories after the two consecutive additions of dust showed distinct behaviors for dMn, dAl and dFe. Even though the mixing conditions differed from one seeding to the other, dMn and dAl showed clear increases directly after both seedings due to dissolution processes. Three days after the dust additions, dAl concentrations decreased as a consequence of scavenging on sinking particles. dAl appeared to be highly affected by the concentrations of biogenic particles, with an order of magnitude difference in its loss rates related to the increase of biomass after the addition of dust. For dFe concentrations, the first dust addition decreased the concentrations through scavenging of the dust particles, whereas the second seeding induced dissolution of Fe from the dust particles. This difference, which might be related to a change in Fe-binding ligand concentration in the mesocosms, highlights the complex processes that control the solubility of Fe. Based on the inventories at the mesocosm scale, the estimations of solubility of metals from dust particles in seawater were 1% for Al and 40% for Mn which were in good agreement with laboratory based estimates. Overall, the trace metal dataset presented here makes a significant contribution to enhancing our knowledge on the processes influencing trace metals release from Saharan dust and the subsequent processes of bio-uptake and scavenging in a low nutrient low chlorophyll area.


2014 ◽  
Vol 11 (2) ◽  
pp. 425-442 ◽  
Author(s):  
C. Guieu ◽  
F. Dulac ◽  
C. Ridame ◽  
P. Pondaven

Abstract. The main goal of project DUNE was to estimate the impact of atmospheric deposition on an oligotrophic ecosystem based on mesocosm experiments simulating strong atmospheric inputs of eolian mineral dust. Our mesocosm experiments aimed at being representative of real atmospheric deposition events onto the surface of oligotrophic marine waters and were an original attempt to consider the vertical dimension after atmospheric deposition at the sea surface. This introductory paper describes the objectives of DUNE and the implementation plan of a series of mesocosm experiments conducted in the Mediterranean Sea in 2008 and 2010 during which either wet or dry and a succession of two wet deposition fluxes of 10 g m−2 of Saharan dust have been simulated based on the production of dust analogs from erodible soils of a source region. After the presentation of the main biogeochemical initial conditions of the site at the time of each experiment, a general overview of the papers published in this special issue is presented. From laboratory results on the solubility of trace elements in dust to biogeochemical results from the mesocosm experiments and associated modeling, these papers describe how the strong simulated dust deposition events impacted the marine biogeochemistry. Those multidisciplinary results are bringing new insights into the role of atmospheric deposition on oligotrophic ecosystems and its impact on the carbon budget. The dissolved trace metals with crustal origin – Mn, Al and Fe – showed different behaviors as a function of time after the seeding. The increase in dissolved Mn and Al concentrations was attributed to dissolution processes. The observed decrease in dissolved Fe was due to scavenging on sinking dust particles and aggregates. When a second dust seeding followed, a dissolution of Fe from the dust particles was then observed due to the excess Fe binding ligand concentrations present at that time. Calcium nitrate and sulfate were formed in the dust analog for wet deposition following evapocondensation with acids for simulating cloud processing by polluted air masses under anthropogenic influence. Using a number of particulate tracers that were followed in the water column and in the sediment traps, it was shown that the dust composition evolves after seeding by total dissolution of these salts. This provided a large source of new dissolved inorganic nitrogen (DIN) in the surface waters. In spite of this dissolution, the typical inter-elemental ratios in the particulate matter, such as Ti / Al or Ba / Al, are not affected during the dust settling, confirming their values as proxies of lithogenic fluxes or of productivity in sediment traps. DUNE experiments have clearly shown the potential for Saharan wet deposition to modify the in situ concentrations of dissolved elements of biogeochemical interest such as Fe and also P and N. Indeed, wet deposition yielded a transient increase in dissolved inorganic phosphorus (DIP) followed by a very rapid return to initial conditions or no return to initial conditions when a second dust seeding followed. By transiently increasing DIP and DIN concentrations in P- and N-starved surface waters of the Mediterranean Sea, wet deposition of Saharan dust can likely relieve the potential P and/or N limitation of biological activity; this has been directly quantified in terms of biological response. Wet deposition of dust strongly stimulated primary production and phytoplanktonic biomass during several days. Small phytoplankton (< 3 μm) was more stimulated after the first dust addition, whereas the larger size class (> 3 μm) significantly increased after the second one, indicating that larger-sized cells need further nutrient supply in order to be able to adjust their physiology and compete for resource acquisition and biomass increase. Among the microorganisms responding to the atmospheric inputs, diazotrophs were stimulated by both wet and dry atmospheric deposition, although N2 fixation was shown to be only responsible for a few percent of the induced new production. Dust deposition modified the bacterial community structure by selectively stimulating and inhibiting certain members of the bacterial community. The microbial food web dynamics were strongly impacted by dust deposition. The carbon budget indicates that the net heterotrophic character (i.e., ratio of net primary production to bacteria respiration < 1) of the tested waters remained (or was even increased) after simulated wet or dry deposition despite the significant stimulation of autotrophs after wet events. This indicates that the oligotrophic tested waters submitted to dust deposition are a net CO2 source. Nonetheless, the system was able to export organic material, half of it being associated with lithogenic particles through aggregation processes between lithogenic particles and organic matter. These observations support the "ballast" hypothesis and suggest that this "lithogenic carbon pump" could represent a major contribution of the global carbon export to deep waters in areas receiving high rates of atmospheric deposition. Furthermore, a theoretical microbial food web model showed that, all other things being equal, carbon, nitrogen and phosphorus stoichiometric mismatch along the food chain can have a substantial impact on the ecosystem response to nutrient inputs from dusts, with changes in the biomass of all biological compartments by a factor of ~ 2–4, and shifts from net autotrophy to net heterotrophy. Although the model was kept simple, it highlights the importance of stoichiometric constrains on the dynamics of microbial food webs.


2021 ◽  
Author(s):  
Jan-Berend Stuut ◽  
Catarina Guerreiro ◽  
Geert-Jan Brummer ◽  
Michèlle van der Does

&lt;p&gt;Mineral dust plays an important role in the ocean&amp;#8217;s carbon cycle through the input of nutrients and metals which potentially fertilise phytoplankton, and by ballasting organic matter from the surface ocean to the sea floor. However, time series and records of open-ocean dust deposition fluxes are sparse. Here, we present a multi-year time series of Saharan dust collected by dust-collecting buoys that are monitoring dust in the equatorial North Atlantic Ocean as well as by moored sediment traps at the buoys' positions at ~21&amp;#176;N/21&amp;#176;W and ~11&amp;#176;N/23&amp;#176;W. We present dust-flux data as well as particle-size distribution data, and make a comparison of the dust collected from the atmosphere at the ocean surface with the dust settling through the ocean and intercepted by the submarine sediment traps. See: www.nioz.nl/dust&lt;/p&gt;


2007 ◽  
Vol 4 (2) ◽  
pp. 1279-1327 ◽  
Author(s):  
J. K. Moore ◽  
O. Braucher

Abstract. A worldwide database of dissolved iron observations is used to improve simulations of the marine iron cycle within a global-scale, Biogeochemical Elemental Cycling (BEC) ocean model. Modifications to the model include: 1) an improved particle scavenging parameterization based on the sinking mass flux of particulate organic material, biogenic silica, calcium carbonate, and mineral dust particles; 2) desorption of dissolved iron from sinking particles; and 3) an improved sedimentary source for dissolved iron. Most scavenged iron (90%) is put on sinking particles to remineralize deeper in the water column. The model-observation mismatches are greatly reduced both in surface waters and in the deeper ocean. Inclusion of desorption has little effect on surface water iron concentrations where adsorption/scavenging is strongly dominant, but significantly increases simulated iron concentrations in the deep ocean. Our results suggest that there must be substantial removal of dissolved iron from subsurface waters (where iron concentrations are <0.6 nM in most regions) to match observed distributions. Aggregation and removal on sinking particles of Fe bound to organic colloids is a likely mechanism. The improved BEC model is used to address the relative contributions of mineral dust and marine sediments in driving ocean productivity and observed dissolved iron distributions. The sedimentary iron source from the continental margins has a strong impact on open ocean iron concentrations, particularly in the North Pacific. Plumes of elevated dissolved iron concentrations develop at depth in the Southern Ocean, extending from source regions in the SW Atlantic and around New Zealand. The lower particle flux and weaker scavenging in this region allows the continental iron source to be advected far from source areas. Both the margin sediment and mineral dust Fe sources significantly impact global scale primary production, export production, and nitrogen fixation, with inputs from dust deposition having a modestly stronger impact. Ocean biogeochemical models need to include the sedimentary source for dissolved iron, or they will overestimate the impact of dust deposition variations on the marine carbon cycle.


2010 ◽  
Vol 7 (6) ◽  
pp. 9219-9272
Author(s):  
Y. Ye ◽  
T. Wagener ◽  
C. Völker ◽  
C. Guieu ◽  
D. A. Wolf-Gladrow

Abstract. A significant decrease of dissolved iron (DFe) concentration has been observed after dust addition into mesocosms during the DUst experiment in a low Nutrient low chlorophyll Ecosystem (DUNE), carried out in the summer of 2008. To understand the processes regulating the observed DFe variation, we simulated the experiment by a one-dimensional model of the Fe biogeochemical cycle, coupled with a simple ecosystem model. Different size classes of particles and particle aggregation are taken into account to describe the particle dynamics. DFe concentration is regulated in the model by dissolution from dust particles and adsorption onto particle surfaces, biological uptake, and photochemical mobilisation of particulate iron. The model reproduces the observed DFe decrease after dust addition well, choosing particle adsorption rates of 30, 150 and 750 m3 kg−1 d−1 for particles of different size classes. These adsorption rates range between the measured adsorption rates of soluble iron and those of colloidal iron, indicating both processes controlling the DFe removal during the experiment. Sensitivity studies reveal that initial DFe concentration before dust addition was crucial for the net impact of dust addition on DFe during the DUNE experiment. From the balance between sinks and sources of DFe, a critical DFe concentration, above which dust deposition acts as a net sink of DFe, rather than a source, has been estimated for the DUNE experiment. Taking into account the role of excess iron binding ligands, this concept of a critical DFe concentration might be applied to explain the short-term variability of DFe after natural dust deposition.


2009 ◽  
Vol 6 (2) ◽  
pp. 4305-4359 ◽  
Author(s):  
Y. Ye ◽  
C. Völker ◽  
D. A. Wolf-Gladrow

Abstract. A one-dimensional model of iron speciation and biogeochemistry, coupled with the General Ocean Turbulence Model (GOTM) and a NPZD-type ecosystem model, is applied for the Tropical Eastern North Atlantic Time-series Observatory (TENATSO) site. Aimed at investigating the role of organic complexation and dust particles in Fe speciation and bioavailability, the model is extended in this study by a more complex description of the origin and fate of organic ligands and of particle aggregation and sinking. Model results show that the profile of dissolved iron is strongly influenced by the abundance of organic ligands. Modelled processes controlling the source and fate of ligands can well explain the abundance of strong ligands. However, a restoring of total weak ligands towards a constant value is required for reproducing the observed nutrient-like profile of weak ligands, indicating that decay time of weak ligands might be too long for a 1d-model. High dust deposition brings not only considerable input of iron into surface waters but also fine inorganic particles for particle aggregation and Fe scavenging. Simulated profiles of dissolved iron show high sensitivity to re-dissolution of colloidal and particulate iron. The colloidal to soluble iron ratio is underestimated assuming that colloidal iron is mainly composed of inorganic colloids. That strongly argues for introducing organic colloids into the model in future work.


Sign in / Sign up

Export Citation Format

Share Document