scholarly journals The Arabian Sea as a high-nutrient, low-chlorophyll region during the late Southwest Monsoon

2010 ◽  
Vol 7 (1) ◽  
pp. 25-53 ◽  
Author(s):  
S. W. A. Naqvi ◽  
J. W. Moffett ◽  
M. U. Gauns ◽  
P. V. Narvekar ◽  
A. K. Pratihary ◽  
...  

Abstract. Extensive observations during the late Southwest Monsoon of 2004 over the Indian and Omani shelves, and along an east-west transect reveal a mosaic of biogeochemical provinces including an unexpected high-nutrient, low-chlorophyll condition off the southern Omani coast. This feature, coupled with other characteristics of the system, suggest a close similarity between the Omani upwelling system and the Peruvian and California upwelling systems, where primary production (PP) is limited by iron. An intensification of upwelling, reported to have been caused by the decline in the winter/spring Eurasian snow cover since 1997, is not supported by in situ hydrographic and chlorophyll measurements as well as a reanalysis of ocean colour data extending to 2009. Iron limitation of PP may complicate simple relationship between upwelling and PP assumed by previous workers, and contribute to the anomalous offshore occurrence of the most severe oxygen (O2) depletion in the region. Over the Indian shelf, affected by very shallow O2-deficient zone, high PP is restricted to a thin, oxygenated surface layer probably due to unsuitability of the O2-depleted environment for the growth of oxygenic photosynthesizers.

2010 ◽  
Vol 7 (7) ◽  
pp. 2091-2100 ◽  
Author(s):  
S. W. A. Naqvi ◽  
J. W. Moffett ◽  
M. U. Gauns ◽  
P. V. Narvekar ◽  
A. K. Pratihary ◽  
...  

Abstract. Extensive observations were made during the late Southwest Monsoon of 2004 over the Indian and Omani shelves, and along a transect that extended from the southern coast of Oman to the central west coast of India, tracking the southern leg of the US JGOFS expedition (1994–1995) in the west. The data are used, in conjunction with satellite-derived data, to investigate long-term trends in chlorophyll and sea surface temperature, indicators of upwelling intensity, and to understand factors that control primary production (PP) in the Arabian Sea, focussing on the role of iron. Our results do not support an intensification of upwelling in the western Arabian Sea, reported to have been caused by the decline in the winter/spring Eurasian snow cover since 1997. We also noticed, for the first time, an unexpected development of high-nutrient, low-chlorophyll condition off the southern Omani coast. This feature, coupled with other characteristics of the system, such as a narrow shelf and relatively low iron concentrations in surface waters, suggest a close similarity between the Omani upwelling system and the Peruvian and California upwelling systems, where PP is limited by iron. Iron limitation of PP may complicate simple relationship between upwelling and PP assumed by previous workers, and contribute to the anomalous offshore occurrence of the most severe oxygen (O2) depletion in the region. Over the much wider Indian shelf, which experiences large-scale bottom water O2-depletion in summer, adequate iron supply from reducing bottom-waters and sediments seems to support moderately high PP; however, such production is restricted to the thin, oxygenated surface layer, probably because of the unsuitability of the O2-depleted environment for the growth of oxygenic photosynthesizers.


2002 ◽  
Vol 23 (16) ◽  
pp. 3305-3305
Author(s):  
P. Chauhan ◽  
M. Mohan ◽  
R. K. Sarangi ◽  
B. Kumari ◽  
S. Nayak ◽  
...  

1991 ◽  
Vol 96 (C11) ◽  
pp. 20623 ◽  
Author(s):  
John C. Brock ◽  
Charles R. McClain ◽  
Mark E. Luther ◽  
William W. Hay

2020 ◽  
Vol 12 (8) ◽  
pp. 1322 ◽  
Author(s):  
Andrew Clive Banks ◽  
Riho Vendt ◽  
Krista Alikas ◽  
Agnieszka Bialek ◽  
Joel Kuusk ◽  
...  

Earth observation data can help us understand and address some of the grand challenges and threats facing us today as a species and as a planet, for example climate change and its impacts and sustainable use of the Earth’s resources. However, in order to have confidence in earth observation data, measurements made at the surface of the Earth, with the intention of providing verification or validation of satellite-mounted sensor measurements, should be trustworthy and at least of the same high quality as those taken with the satellite sensors themselves. Metrology tells us that in order to be trustworthy, measurements should include an unbroken chain of SI-traceable calibrations and comparisons and full uncertainty budgets for each of the in situ sensors. Until now, this has not been the case for most satellite validation measurements. Therefore, within this context, the European Space Agency (ESA) funded a series of Fiducial Reference Measurements (FRM) projects targeting the validation of satellite data products of the atmosphere, land, and ocean, and setting the framework, standards, and protocols for future satellite validation efforts. The FRM4SOC project was structured to provide this support for evaluating and improving the state of the art in ocean colour radiometry (OCR) and satellite ocean colour validation through a series of comparisons under the auspices of the Committee on Earth Observation Satellites (CEOS). This followed the recommendations from the International Ocean Colour Coordinating Group’s white paper and supports the CEOS ocean colour virtual constellation. The main objective was to establish and maintain SI traceable ground-based FRM for satellite ocean colour and thus make a fundamental contribution to the European system for monitoring the Earth (Copernicus). This paper outlines the FRM4SOC project structure, objectives and methodology and highlights the main results and achievements of the project: (1) An international SI-traceable comparison of irradiance and radiance sources used for OCR calibration that set measurement, calibration and uncertainty estimation protocols and indicated good agreement between the participating calibration laboratories from around the world; (2) An international SI-traceable laboratory and outdoor comparison of radiometers used for satellite ocean colour validation that set OCR calibration and comparison protocols; (3) A major review and update to the protocols for taking irradiance and radiance field measurements for satellite ocean colour validation, with particular focus on aspects of data acquisition and processing that must be considered in the estimation of measurement uncertainty and guidelines for good practice; (4) A technical comparison of the main radiometers used globally for satellite ocean colour validation bringing radiometer manufacturers together around the same table for the first time to discuss instrument characterisation and its documentation, as needed for measurement uncertainty estimation; (5) Two major international side-by-side field intercomparisons of multiple ocean colour radiometers, one on the Atlantic Meridional Transect (AMT) oceanographic cruise, and the other on the Acqua Alta oceanographic tower in the Gulf of Venice; (6) Impact and promotion of FRM within the ocean colour community, including a scientific road map for the FRM-based future of satellite ocean colour validation and vicarious calibration (based on the findings of the FRM4SOC project, the consensus from two major international FRM4SOC workshops and previous literature, including the IOCCG white paper on in situ ocean colour radiometry).


2021 ◽  
Author(s):  
Marilaure Grégoire ◽  

<p>The Black Sea is a small enclosed basin where coastal regions have a large influence and mesoscale signals dominate the dynamics (the Rossby radius of deformation is about 20km). Large riverine inputs, mainly on the northwestern shelf, induce well-marked horizontal gradients in the distribution of the Black Sea salinity and optical characteristics: coastal and shelf waters have very low salinity and contain large amounts of optically active materials (e.g. coloured dissolved organic matter) and its oligotrophic deep sea has a salinity around 18.2. The presence of these contrasting water characteristics in a relatively small enclosed environment, combined with land contamination and the specificities of its atmospheric composition(e.g. high cloud coverage, aerosols) make the Black Sea a challenging area for the development of high quality satellite products. </p><p> </p><p>We present first results from a 2-year on-going ESA-funded project, EO4SIBS (Earth Observation for Science and Innovation in the Black Sea) dedicated to the development, and subsequent scientific analysis, of new algorithms and products. In particular, ocean colour products (chlorophyll-a and total suspended matter concentrations, turbidity) were produced from Sentinel 3 (S3) OLCI data combining different algorithms selected based on an automatic water mass classification procedure (case-1 versus case-2 waters). In specific areas, S3-OLCI and Sentinel 2-MSI data were merged to address local features. A revised gridded altimetry product based on 5-Hz along track data (combining Cryosat and S3 SAR) was produced and validated in the coastal zone with tide gauge data. Sea Surface Salinity was derived from the L-Band measured by SMOS and compared with in-situ surface salinity data from field sampling and Argo. </p><p> </p><p>All these products are now being integrated to further understand the Black Sea physical and biogeochemical functioning (e.g., plume and productivity patterns, mesoscale dynamics, deoxygenation). For instance, the Black Sea mesoscale dynamics are inferred from the 5-Hz altimetry product using an eddy detection and tracking algorithm. The quality of the eddy mapping is assessed by comparison with visible and infrared satellite products while the derived velocities are compared with drifters. Also, the benefit of assimilating ocean colour data in the Black Sea operational model (also known as CMEMS BS-MFC BIO) for the prediction of the Black Sea ecosystem will  be illustrated.</p><p> </p><p>Gridded products are archived as CF-compliant NetCDF files and disseminated through ncWMS protocol. In-situ data are modeled as vector points in a PostGIS database. A web portal is being implemented in order to propose an efficient spatiotemporal exploration of both data sources in a user-friendly interface, including interactive map layers and export possibilities.</p><p> </p><p>We conclude with a set of recommendations for observational requirements needed  to increase the quality of satellite products in the Black Sea and to be able to use the full potential of current and new information provided by  satellites. </p><p> </p>


Sign in / Sign up

Export Citation Format

Share Document