scholarly journals Aptian–Albian clumped isotopes from northwest China: cool temperatures, variable atmospheric <i>p</i>CO<sub>2</sub> and regional shifts in the hydrologic cycle

2021 ◽  
Vol 17 (4) ◽  
pp. 1607-1625
Author(s):  
Dustin T. Harper ◽  
Marina B. Suarez ◽  
Jessica Uglesich ◽  
Hailu You ◽  
Daqing Li ◽  
...  

Abstract. The Early Cretaceous is characterized by warm background temperatures (i.e., greenhouse climate) and carbon cycle perturbations that are often marked by ocean anoxic events (OAEs) and associated shifts in the hydrologic cycle. Higher-resolution records of terrestrial and marine δ13C and δ18O (both carbonates and organics) suggest climate shifts during the Aptian–Albian, including a warm period associated with OAE 1a in the early Aptian and a subsequent “cold snap” near the Aptian–Albian boundary prior to the Kilian and OAE 1b. Understanding the continental system is an important factor in determining the triggers and feedbacks to these events. Here, we present new paleosol carbonate stable isotopic (δ13C, δ18O and Δ47) and CALMAG weathering parameter results from the Xiagou and Zhonggou formations (part of the Xinminpu Group in the Yujingzi Basin of NW China) spanning the Aptian–Albian. Published mean annual air temperature (MAAT) records of the Barremian–Albian from Asia are relatively cool with respect to the Early Cretaceous. However, these records are largely based on coupled δ18O measurements of dinosaur apatite phosphate (δ18Op) and carbonate (δ18Ocarb) and therefore rely on estimates of meteoric water δ18O (δ18Omw) from δ18Op. Significant shifts in the hydrologic cycle likely influenced δ18Omw in the region, complicating these MAAT estimates. Thus, temperature records independent of δ18Omw (e.g., clumped isotopes or Δ47) are desirable and required to confirm temperatures estimated with δ18Op and δ18Oc and to reliably determine regional shifts in δ18Omw. Primary carbonate material was identified using traditional petrography, cathodoluminescence inspection, and δ13C and δ18O subsampling. Our preliminary Δ47-based temperature reconstructions (record mean of 14.9 ∘C), which we interpret as likely being representative of MAAT, match prior estimates from similar paleolatitudes of Asian MAAT (average ∼ 15 ∘C) across the Aptian–Albian. This, supported by our estimated mean atmospheric paleo-pCO2 concentration of 396 ppmv, indicates relatively cooler midlatitude terrestrial climate. Additionally, our coupled δ18O and Δ47 records suggest shifts in the regional hydrologic cycle (i.e., ΔMAP, mean annual precipitation, and Δδ18Omw) that may track Aptian–Albian climate perturbations (i.e., a drying of Asian continental climate associated with the cool interval).

2020 ◽  
Author(s):  
Dustin T. Harper ◽  
Marina B. Suarez ◽  
Jessica Uglesich ◽  
Hailu You ◽  
Daqing Li ◽  
...  

Abstract. The Early Cretaceous is characterized by warm background temperatures (i.e., greenhouse climate) and carbon cycle perturbations that are often marked by Ocean Anoxic Events (OAEs) and associated shifts in the hydrologic cycle. Higher-resolution records of terrestrial and marine δ13C and δ18O (both carbonates and organics) suggest climate shifts during the Aptian-Albian, including a warm period associated with OAE 1a in the early Aptian and subsequent cold snap near the Aptian-Albian boundary prior to the Kilian and OAE 1b. Understanding the continental system is an important factor in determining the triggers and feedbacks to these events. Here, we present new paleosol carbonate stable isotopic (δ13C, δ18O and Δ47) and CALMAG weathering parameter results from the Xiagou and Zhonggou Formations (part of the Xinminpu Group in the Yujingzi Basin of NW China) spanning the Aptian-Albian. Published mean annual air temperature (MAAT) records of the Barremian-Albian from Asia are relatively cool with respect to the Early Cretaceous. However, these records are largely based on coupled δ18O measurements of dinosaur apatite phosphate (δ18Op) and carbonate (δ18Ocarb), and therefore rely on estimates of meteoric water δ18O (δ18Omw) from δ18Op. Significant shifts in the hydrologic cycle likely influenced δ18Omw in the region, complicating these MAAT estimates. Thus, temperature records independent of δ18Omw (e.g., clumped isotopes or Δ47) are desirable, and required to confirm temperatures estimated with δ18Op and δ18Oc, and to reliably determine regional shifts in δ18Omw. Primary carbonate material was identified using traditional petrography, cathodoluminescence inspection, and δ13C and δ18O subsampling. Our preliminary Δ47-based temperature reconstructions (record mean of 14.9 ºC), which we interpret as likely being representative of MAAT, match prior estimates from similar paleolatitudes of Asian MAAT (average ~15 ºC) across the Aptian-Albian. This, supported by our estimated mean atmospheric paleo-pCO2 concentration of 396 ppmv, indicates relatively cooler mid-latitude terrestrial climate. Additionally, our coupled δ18O and Δ47 records suggest shifts in the regional hydrologic cycle (i.e., ΔMAP and Δδ18Omw) that may track Aptian-Albian climate perturbations (i.e., a drying of Asian continental climate associated with the cool interval).


2019 ◽  
Vol 7 (2) ◽  
pp. T525-T545
Author(s):  
Yaxiong Sun ◽  
Wenlong Ding ◽  
Yang Gu ◽  
Gang Zhao ◽  
Siyu Shi ◽  
...  

Redbeds with a large thickness in the lower Cretaceous record abundant geologic information in the Minle Basin. We have conducted the paleoweathering conditions, provenance, and tectonic settings based on mineralogy and geochemistry. Our results indicate that mudstone samples are characterized by abundant illite with negligible amounts of K-feldspars and analcime. The lower part of the lower Cretaceous is rich in quartz, whereas the upper part is dominated by dolomite and analcime. We suggest that this is caused by the decreasing input of the clastic influx during the middle-late early Cretaceous. High index of compositional variation values (average 1.33) indicate first-cycle sediment supply, suggesting an overall compositional immaturity and short-distance transportation. These characteristics are consistent with an active regional extension tectonic setting. The [Formula: see text] system ([Formula: see text];[Formula: see text];[Formula: see text]) and Th/U versus Th consistently reveal that the lower Cretaceous experienced a positive gradient in chemical weathering from young to old formations. Although the patterns of trace elements in three formations of the lower Cretaceous are different, those of the rare earth elements (REEs) tend to be consistent. The significant enrichment of light REEs, heavy REEs fractionation, and distinctive negative Eu anomalies suggest derivation from an old, upper continental crust composed of predominantly felsic sediments. This interpretation is supported by several discrimination diagrams such as titanium dioxide-nickel ([Formula: see text]), which shows the characteristics of immature recycled sediments. A few sensitive elements, ratios, and normalized REE patterns indicate a provenance of an active continental margin and a continental island arc (CIA). The La-Th-Sc, Th-Co-Zr/10, and Th-Sc-Zr/10 discrimination plots further confirm the CIA signature. Thus, we conclude that the early Cretaceous redbeds in the Minle Basin, Hexi Corridor, were deposited in a dustpan-shaped half-graben basin in a CIA setting when northwest China was influenced by intense regional extension.


2003 ◽  
Vol 24 (3) ◽  
pp. 347-355 ◽  
Author(s):  
Hai-lu You ◽  
Zhe-xi Luo ◽  
Neil H. Shubin ◽  
Lawrence M. Witmer ◽  
Zhi-lu Tang ◽  
...  

2020 ◽  
Vol 110 ◽  
pp. 104390 ◽  
Author(s):  
Lucas Pinto Heckert Bastos ◽  
Egberto Pereira ◽  
Danielle da Costa Cavalcante ◽  
Carmen Lucia Ferreira Alferes ◽  
Celma Jorge de Menezes ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document