ocean drilling
Recently Published Documents


TOTAL DOCUMENTS

976
(FIVE YEARS 95)

H-INDEX

61
(FIVE YEARS 5)

Eos ◽  
2022 ◽  
Vol 103 ◽  
Author(s):  
Paula Bontempi

Scientific ocean drilling is an enduring paragon of global research, advancing knowledge of Earth and informing scientists and educators for 55 years. A new road map plots the way to further discovery.


2021 ◽  
Vol 17 (6) ◽  
pp. 2393-2425
Author(s):  
Peter K. Bijl ◽  
Joost Frieling ◽  
Margot J. Cramwinckel ◽  
Christine Boschman ◽  
Appy Sluijs ◽  
...  

Abstract. Sea surface temperature (SST) reconstructions based on isoprenoid glycerol dialkyl glycerol tetraether (isoGDGT) distributions from the Eocene southwest (SW) Pacific Ocean are unequivocally warmer than can be reconciled with state-of-the-art fully coupled climate models. However, the SST signal preserved in sedimentary archives can be affected by contributions of additional isoGDGT sources. Methods now exist to identify and possibly correct for overprinting effects on the isoGDGT distribution in marine sediments. Here, we use the current proxy insights to (re-)assess the reliability of the isoGDGT-based SST signal in 69 newly analyzed and 242 reanalyzed sediments at Ocean Drilling Program (ODP) Site 1172 (East Tasman Plateau, Australia) following state-of-the-art chromatographic techniques. We compare our results with paleoenvironmental and paleoclimatologic reconstructions based on dinoflagellate cysts. The resulting ∼ 130 kyr resolution Maastrichtian–Oligocene SST record based on the TetraEther indeX of tetraethers with 86 carbon atoms (TEX86) confirms previous conclusions of anomalous warmth in the early Eocene SW Pacific and remarkably cool conditions during the mid-Paleocene. Dinocyst diversity and assemblages show a strong response to the local SST evolution, supporting the robustness of the TEX86 record. Soil-derived branched GDGTs stored in the same sediments are used to reconstruct mean annual air temperature (MAAT) of the nearby land using the Methylation index of Branched Tetraethers with 5-methyl bonds (MBT'5me) proxy. MAAT is consistently lower than SST during the early Eocene, independent of the calibration chosen. General trends in SST and MAAT are similar, except for (1) an enigmatic absence of MAAT rise during the Paleocene–Eocene Thermal Maximum and Middle Eocene Climatic Optimum, and (2) a subdued middle–late Eocene MAAT cooling relative to SST. Both dinocysts and GDGT signals suggest a mid-shelf depositional environment with strong river runoff during the Paleocene–early Eocene progressively becoming more marine thereafter. This trend reflects gradual subsidence and more pronounced wet/dry seasons in the northward-drifting Australian hinterland, which may also explain the subdued middle Eocene MAAT cooling relative to that of SST. The overall correlation between dinocyst assemblages, marine biodiversity and SST changes suggests that temperature exerted a strong influence on the surface-water ecosystem. Finally, we find support for a potential temperature control on compositional changes of branched glycerol monoalkyl glycerol tetraethers (brGMGTs) in marine sediments. It is encouraging that a critical evaluation of the GDGT signals confirms that most of the generated data are reliable. However, this also implies that the high TEX86-based SSTs for the Eocene SW Pacific and the systematic offset between absolute TEX86-based SST and MBT'5me-based MAAT estimates remain without definitive explanation.


2021 ◽  
pp. 1-15
Author(s):  
Gérôme Calvès ◽  
Alan Mix ◽  
Liviu Giosan ◽  
Peter D. Clift ◽  
Stéphane Brusset ◽  
...  

Abstract The evolution and resulting morphology of a contourite drift system in the SE Pacific oceanic basin is investigated in detail using seismic imaging and an age-calibrated borehole section. The Nazca Drift System covers an area of 204 500 km2 and stands above the abyssal basins of Peru and Chile. The drift is spread along the Nazca Ridge in water depths between 2090 and 5330 m. The Nazca Drift System was drilled at Ocean Drilling Program Site 1237. This deep-water drift overlies faulted oceanic crust and onlaps associated volcanic highs. Its thickness ranges from 104 to 375 m. The seismic sheet facies observed are associated with bottom current processes. The main lithologies are pelagic carbonates reflecting the distal position relative to South America and water depth above the carbonate compensation depth during Oligocene time. The Nazca Drift System developed under the influence of bottom currents sourced from the Circumpolar Deep Water and Pacific Central Water, and is the largest yet identified abyssal drift system of the Pacific Ocean, ranking third in all abyssal contourite drift systems globally. Subduction since late Miocene time and the excess of sediments and water associated with the Nazca Drift System may have contributed to the Andean orogeny and associated metallogenesis. The Nazca Drift System records the evolution in interactions between deep-sea currents and the eastward motion of the Nazca Plate through erosive surfaces and sediment remobilization.


2021 ◽  
Vol 40 (2) ◽  
pp. 175-193
Author(s):  
Frida S. Hoem ◽  
Isabel Sauermilch ◽  
Suning Hou ◽  
Henk Brinkhuis ◽  
Francesca Sangiorgi ◽  
...  

Abstract. Improvements in our capability to reconstruct ancient surface-ocean conditions based on organic-walled dinoflagellate cyst (dinocyst) assemblages from the Southern Ocean provide an opportunity to better establish past position, strength and oceanography of the subtropical front (STF). Here, we aim to reconstruct the late Eocene to early Miocene (37–20 Ma) depositional and palaeoceanographic history of the STF in the context of the evolving Tasmanian Gateway as well as the potential influence of Antarctic circumpolar flow and intense waxing and waning of ice. We approach this by combining information from seismic lines (revisiting existing data and generating new marine palynological data from Ocean Drilling Program (ODP) Hole 1168A) in the western Tasmanian continental slope. We apply improved taxonomic insights and palaeoecological models to reconstruct the sea surface palaeoenvironmental evolution. Late Eocene–early Oligocene (37–30.5 Ma) assemblages show a progressive transition from dominant terrestrial palynomorphs and inner-neritic dinocyst taxa as well as cysts produced by heterotrophic dinoflagellates to predominantly outer-neritic/oceanic autotrophic taxa. This transition reflects the progressive deepening of the western Tasmanian continental margin, an interpretation supported by our new seismic investigations. The dominance of autotrophic species like Spiniferites spp. and Operculodinium spp. reflects relatively oligotrophic conditions, like those of regions north of the modern-day STF. The increased abundance in the earliest Miocene of Nematosphaeropsis labyrinthus, typical for modern subantarctic zone (frontal) conditions, indicates a cooling and/or closer proximity of the STF to the site . The absence of major shifts in dinocyst assemblages contrasts with other records in the region and suggests that small changes in surface oceanographic conditions occurred during the Oligocene. Despite the relatively southerly (63–55∘ S) location of Site 1168, the rather stable oceanographic conditions reflect the continued influence of the proto-Leeuwin Current along the southern Australian coast as Australia continued to drift northward. The relatively “warm” dinocyst assemblages at ODP Site 1168, compared with the cold assemblages at Antarctic Integrated Ocean Drilling Program (IODP) Site U1356, testify to the establishment of a pronounced latitudinal temperature gradient in the Oligocene Southern Ocean.


2021 ◽  
Vol 51 (3) ◽  
pp. 139-164
Author(s):  
Andrew J. Fraass ◽  
R. Mark Leckie

ABSTRACT The Oligocene (33.9–23.0 Ma) has historically proven to be a difficult interval to examine with respect to planktic foraminifera; the tendency for many of the taxa to be basically globigerine in shape, with 4 or 5 chambers in the final whorl means differences between species are limited. Recently, an international working group has attempted to clarify the Oligocene planktic foraminiferal taxonomy, with the goal of establishing phylogenetically-consistent generic and species concepts. A relatively expanded and continuous Oligocene section recovered at Ocean Drilling Program Site 803 in the western equatorial Pacific was previously studied by Leckie et al. (1993) using fairly conservative species concepts. Since 1993, foraminiferal biostratigraphic datum age calibrations have changed, and so revised sedimentation rates for the 220-m thick Oligocene sequence are actually more constant than previously thought. As a part of the recent taxonomic revision, this site was reevaluated and numerous additional taxa are recorded at this location. Macroevolutionary rates are calculated from the occurrences, and increased extinction is found within the late Oligocene, counter to the expectations laid out in broader-scale macroevolutionary studies. An effort is made here to describe the diagnostic features, which can be used to distinguish all taxa under a standard binocular microscope. Finally, several figures of scanning electron microscope photomicrographs (from Site 803 and tropical Atlantic Ocean ODP Site 628) depict features used to describe and differentiate important, but difficult or homeomorphic taxa, with the hope that these figures can be used by other workers at the microscope attempting to do Oligocene taxonomy-based studies.


Sign in / Sign up

Export Citation Format

Share Document