scholarly journals Carbon accumulation rates of Holocene peatlands in central–eastern Europe document the driving role of human impact over the past 4000 years

2021 ◽  
Vol 17 (6) ◽  
pp. 2633-2652
Author(s):  
Jack Longman ◽  
Daniel Veres ◽  
Aritina Haliuc ◽  
Walter Finsinger ◽  
Vasile Ersek ◽  
...  

Abstract. Peatlands are one of the largest terrestrial carbon sinks on the planet, yet little is known about the carbon accumulation rates (CARs) of mountainous peatlands. The long-term variability in the size of the associated carbon sink and its drivers remain largely unconstrained, especially when the long-term anthropogenic impact is also considered. Here, we present a composite CAR record of nine peatlands from central–eastern Europe (Romania and Serbia) detailing variability in the rates of carbon accumulation during the Holocene. We show examples of extremely high long-term rates of carbon accumulation (LORCA>120 gCm-2yr-1), indicating that mountain peatlands constitute an efficient regional carbon sink at times. By comparing our data to modelled palaeoclimatic indices and to measures of anthropogenic impact we disentangle the drivers of peat carbon accumulation in the area. Variability in early- and mid-Holocene CARs is linked to hydroclimatic controls, with high CARs occurring during the early Holocene and lower CARs associated with the transition to cooler and moister mid-Holocene conditions. By contrast, after 4000 years (calibrated) before present (years BP), the trends in CARs indicate a divergence from hydroclimate proxies, suggesting that other processes became the dominant drivers of peat CARs. We propose that enhanced erosion following tree cover reduction as well as increased rates of long-distance atmospheric dust fallout might have played a role, as both processes would result in enhanced mineral and nutrient supply to bog surfaces, stimulating peatland productivity. Surprisingly though, for the last 1000 years, reconstructed temperature is significantly correlated with CARs, with rising temperatures linked to higher CARs. Under future climate conditions, which are predicted to be warmer in the region, we predict that peat growth may expand but that this is entirely dependent upon the scale of human impact directly affecting the sensitive hydrological budget of these peatlands.

2021 ◽  
Author(s):  
Jack Longman ◽  
Daniel Veres ◽  
Aritina Haliuc ◽  
Walter Finsinger ◽  
Vasile Ersek ◽  
...  

Abstract. Peatlands are one of the largest terrestrial carbon sinks on the planet, yet little is known about carbon accumulation rates (CARs) of mountainous examples. The long-term variability in the size of the associated carbon sink and its drivers remain largely unconstrained, especially when long-term anthropogenic impact is also considered. Here we present a composite CAR record of nine peatlands from central-eastern Europe (Romania and Serbia) detailing variability in rates of carbon accumulation across the Holocene. We show examples of extremely high long-term rates of carbon accumulation (LORCA > 120 g C m−2 yr−1), indicating that at times, mountain peatlands constitute an efficient regional carbon sink. By comparing our data to modelled palaeoclimatic indices and to measures of anthropogenic impact we disentangle the drivers of peat carbon accumulation in the area. Variability in early and mid-Holocene CARs is linked to hydroclimatic controls, with high CARs occurring during the early Holocene and lower CARs associated with the transition to cooler and moister mid-Holocene conditions. By contrast, after 4000 years (calibrated) before present (yr BP) the trends in CARs indicate a divergence from hydroclimate proxies, indicating that other processes became the dominant drivers of peat CARs. We suggest that enhanced erosion following tree cover reduction as well as enhanced rates of long-distance atmospheric dust fallout might have played a role as both processes would result in enhanced mineral and nutrient supply to bog surfaces, stimulating peat land productivity. Surprisingly though, for the last 1000 years, reconstructed temperature is significantly correlated with CARs, with rising temperatures linked to higher CARs. We suggest under future climate conditions, predicted to be warmer in the region, peat growth may expand, but that this is entirely dependent upon the scale of human impact directly affecting the sensitive hydrological budget of these peatlands.


2017 ◽  
Vol 14 (18) ◽  
pp. 4023-4044 ◽  
Author(s):  
Nitin Chaudhary ◽  
Paul A. Miller ◽  
Benjamin Smith

Abstract. Most northern peatlands developed during the Holocene, sequestering large amounts of carbon in terrestrial ecosystems. However, recent syntheses have highlighted the gaps in our understanding of peatland carbon accumulation. Assessments of the long-term carbon accumulation rate and possible warming-driven changes in these accumulation rates can therefore benefit from process-based modelling studies. We employed an individual-based dynamic global ecosystem model with dynamic peatland and permafrost functionalities and patch-based vegetation dynamics to quantify long-term carbon accumulation rates and to assess the effects of historical and projected climate change on peatland carbon balances across the pan-Arctic region. Our results are broadly consistent with published regional and global carbon accumulation estimates. A majority of modelled peatland sites in Scandinavia, Europe, Russia and central and eastern Canada change from carbon sinks through the Holocene to potential carbon sources in the coming century. In contrast, the carbon sink capacity of modelled sites in Siberia, far eastern Russia, Alaska and western and northern Canada was predicted to increase in the coming century. The greatest changes were evident in eastern Siberia, north-western Canada and in Alaska, where peat production hampered by permafrost and low productivity due the cold climate in these regions in the past was simulated to increase greatly due to warming, a wetter climate and higher CO2 levels by the year 2100. In contrast, our model predicts that sites that are expected to experience reduced precipitation rates and are currently permafrost free will lose more carbon in the future.


The Holocene ◽  
2014 ◽  
Vol 24 (11) ◽  
pp. 1539-1549 ◽  
Author(s):  
Barbara Fiałkiewicz-Kozieł ◽  
Beata Smieja-Król ◽  
Natalia Piotrowska ◽  
Jarosław Sikorski ◽  
Mariusz Gałka

Fens are underestimated carbon sinks. Knowledge about their role in the sequestration of CO2 in the past is limited. The research reported here focused on identifying long-term carbon accumulation rates (CARs) in a drained fen (Bagno Bruch) and a waterlogged fen (Bagno Mikołeska) in southern Poland. On the basis of 210Pb and AMS 14C dates and age–depth modeling, 7000- and 2000-year records of changes in bulk composition and carbon and sulfur content are presented and discussed. Strong human impact is detected, especially in Bagno Bruch. However, minor climatic signals linked to the ‘Little Ice Age’ and to the influence of wind-blown sands are also evident. The sand may have influenced the plant composition, peat accumulation rates (PARs), and CARs, in addition to the bulk composition at Bagno Mikołeska. The mean value of the CAR in the youngest peat layers spanning the last 200 years is generally lower in two cores from Bagno Bruch ( c. 85 and 86 g/m2/yr) than in two cores from Bagno Mikołeska ( c. 140 and 142 g/m2/yr). The fens are characterized by higher CARs compared with boreal peatlands. The reproducibility of the CAR values is the most promising result, suggesting the low mobility of 210Pb and the reliability of this method in assessing the chronology of fens.


Radiocarbon ◽  
2018 ◽  
Vol 60 (3) ◽  
pp. 941-962 ◽  
Author(s):  
Karis J McFarlane ◽  
Paul J Hanson ◽  
Colleen M Iversen ◽  
Jana R Phillips ◽  
Deanne J Brice

ABSTRACTWe evaluated the spatial heterogeneity of historical carbon accumulation rates in a forested, ombrotrophic bog in Minnesota to aid understanding of responses to an ongoing decade-long warming manipulation. Eighteen peat cores indicated that the bog has been accumulating carbon for over 11,000 years, to yield 176±40 kg C m−2 to 225±58 cm of peat depth. Estimated peat basal ages ranged from 5100 to 11,100 cal BP. The long-term apparent rate of carbon accumulation over the entire peat profile was 22±2 kg C m−2 yr−1. Plot location within the study area did not affect carbon accumulation rates, but estimated basal ages were younger in profiles from plots closer to the bog lagg and farther from the bog outlet. In addition, carbon accumulation varied considerably over time. Early Holocene net carbon accumulation rates were 30±6 g C m−2 yr−1. Around 3300 calendar BP, net carbon accumulation rates dropped to 15±8 g C m−2 yr−1 until the last century when net accumulation rates increased again to 74±57 g C m−2 yr−1. During this period of low accumulation, regional droughts may have lowered the water table, allowing for enhanced aerobic decomposition and making the bog more susceptible to fire. These results suggest that experimental warming treatments, as well as a future warmer climate may reduce net carbon accumulation in peat in this and other southern boreal peatlands. Furthermore, our we caution against historical interpretations extrapolated from one or a few peat cores.


Radiocarbon ◽  
1995 ◽  
Vol 37 (2) ◽  
pp. 575-584 ◽  
Author(s):  
Atte Korhola ◽  
Kimmo Tolonen ◽  
Jukka Turunen ◽  
Högne Jungner

We used direct radiocarbon dates of peat samples, pollen dates and land-uplift chronology from >1300 cores comprising all or most of the Holocene in the boreal region of Finland, Estonia and Maine (USA) to obtain long-term carbon accumulation rates for boreal peatlands. The “apparent” long-term rate of carbon accumulation (LORCA; g C m−2 a−1) ranged from 4.6 to 85.8 (mean 19.9 ± 10.7), depending on the geographical location, wetland type and the age of the mire. The “true” or “actual” rate of carbon accumulation (ARCA), as derived from models for peatbog growth, was usually ca. 70% of LORCA. We studied the raised bog Reksuo more intensely in terms of growth dynamics, and we report preliminary results of the “three-dimensional” or spatial carbon accumulation rates. These results strongly contradict the concept of constant input and constant decay throughout the millennia. The study emphasizes the importance of exploring the formation and dynamics of entire mire ecosystems, and the role of carbon in these systems, in addition to studying single cores.


2020 ◽  
Vol 14 ◽  
pp. 263235242095800
Author(s):  
Piotr Krakowiak

The growth of life expectancy in Central Eastern Europe and increase in the number of older people in that region are the consequences of changes in the 1990s period, connected to transition from the communism into a market economy. Central Eastern Europe is already facing consequences of fast ageing and insufficient development of state health care and social services. Those result in gaps in the provision of end-of-life care and overburden of family caregivers. This essay addresses gaps in end-of-life care, showing the development of hospice-palliative care on one side, and highlighting main problems with long-term care on the other. There is scarce support for informal caregivers and lack of cooperation between health and social care. End-of-life care is over medicalized in hospice-palliative care and hardly existing in long-term care. Dying is more a social than medical event, and as such, it should be cared for by compassionate communities, encouraging cooperation of professionals with family caregivers and society. Unfortunately, to date, there is no adequate cooperation in social dimension of end-of-life care in most of Central Eastern Europe. The social dimension of end-of-life care has to be recognized and empowered with the health promoting palliative care and introduction of compassionate communities in Central Eastern Europe.


2017 ◽  
Author(s):  
Nitin Chaudhary ◽  
Paul A. Miller ◽  
Benjamin Smith

Abstract. Most northern peatlands developed during the Holocene, sequestering large amounts of carbon in terrestrial ecosystems. However, recent syntheses have highlighted the gaps in our understanding of peatland carbon accumulation. Assessments of the long-term carbon accumulation rate and possible warming driven changes in these accumulation rates can therefore benefit from process-based modelling studies. We employed an individual- and patch-based dynamic global ecosystem model with dynamic peatland and permafrost functionality and vegetation dynamics to quantify long-term carbon accumulation rates and to assess the effects of historical and projected climate change on peatland carbon balances across the pan-Arctic. Our results are broadly consistent with published regional and global carbon accumulation estimates. A majority of modelled peatland sites in Scandinavia, Europe, Russia and Central and eastern Canada change from carbon sinks through the Holocene to potential carbon sources in the coming century. In contrast, the carbon sink capacity of modelled sites in Siberia, Far East Russia, Alaska and western and northern Canada was predicted to increase in the coming century. The greatest changes were evident in eastern Siberia, northwest Canada and in Alaska, where peat production, from being hampered by permafrost and low productivity due the cold climate in these regions in the past, was simulated to increase greatly due to warming, wetter climate and greater CO2 levels by the year 2100. In contrast, our model predicts that sites that are expected to experience reduced precipitation rates and are currently permafrost free will lose more carbon in the future.


Sign in / Sign up

Export Citation Format

Share Document