scholarly journals Supplementary material to "The SP19 Chronology for the South Pole Ice Core – Part 1: Volcanic matching and annual-layer counting"

Author(s):  
Dominic A. Winski ◽  
Tyler J. Fudge ◽  
David G. Ferris ◽  
Erich C. Osterberg ◽  
John M. Fegyveresi ◽  
...  
2020 ◽  
Author(s):  
Jenna A. Epifanio ◽  
Edward J. Brook ◽  
Christo Buizert ◽  
Jon S. Edwards ◽  
Todd A. Sowers ◽  
...  

2019 ◽  
Author(s):  
Tyler J. Fudge ◽  
David A. Lilien ◽  
Michelle Koutnik ◽  
Howard Conway ◽  
C. Max Stevens ◽  
...  

2019 ◽  
Vol 15 (5) ◽  
pp. 1793-1808 ◽  
Author(s):  
Dominic A. Winski ◽  
Tyler J. Fudge ◽  
David G. Ferris ◽  
Erich C. Osterberg ◽  
John M. Fegyveresi ◽  
...  

Abstract. The South Pole Ice Core (SPICEcore) was drilled in 2014–2016 to provide a detailed multi-proxy archive of paleoclimate conditions in East Antarctica during the Holocene and late Pleistocene. Interpretation of these records requires an accurate depth–age relationship. Here, we present the SPICEcore (SP19) timescale for the age of the ice of SPICEcore. SP19 is synchronized to the WD2014 chronology from the West Antarctic Ice Sheet Divide (WAIS Divide) ice core using stratigraphic matching of 251 volcanic events. These events indicate an age of 54 302±519 BP (years before 1950) at the bottom of SPICEcore. Annual layers identified in sodium and magnesium ions to 11 341 BP were used to interpolate between stratigraphic volcanic tie points, yielding an annually resolved chronology through the Holocene. Estimated timescale uncertainty during the Holocene is less than 18 years relative to WD2014, with the exception of the interval between 1800 to 3100 BP when uncertainty estimates reach ±25 years due to widely spaced volcanic tie points. Prior to the Holocene, uncertainties remain within 124 years relative to WD2014. Results show an average Holocene accumulation rate of 7.4 cm yr−1 (water equivalent). The time variability of accumulation rate is consistent with expectations for steady-state ice flow through the modern spatial pattern of accumulation rate. Time variations in nitrate concentration, nitrate seasonal amplitude and δ15N of N2 in turn are as expected for the accumulation rate variations. The highly variable yet well-constrained Holocene accumulation history at the site can help improve scientific understanding of deposition-sensitive climate proxies such as δ15N of N2 and photolyzed chemical compounds.


2019 ◽  
Author(s):  
Dominic A. Winski ◽  
Tyler J. Fudge ◽  
David G. Ferris ◽  
Erich C. Osterberg ◽  
John M. Fegyveresi ◽  
...  

Abstract. The South Pole Ice Core (SPICEcore) was drilled in 2014–2016 to provide a detailed multi-proxy archive of paleoclimate conditions in East Antarctica during the Holocene and late Pleistocene. Interpretation of these records requires an accurate depth-age relationship. Here, we present the SP19 timescale for the age of the ice of SPICEcore. SP19 is synchronized to the WD2014 chronology from the West Antarctic Ice Sheet Divide (WAIS Divide) ice core using stratigraphic matching of 251 volcanic events. These events indicate an age of 54 302 ± 519 years BP (before the year 1950) at the bottom of SPICEcore. Annual layers identified in sodium and magnesium ions to 11 341 BP were used to interpolate between stratigraphic volcanic tie points, yielding an annually-resolved chronology through the Holocene. Estimated timescale uncertainty during the Holocene is less than 18 years relative to WD2014, with the exception of the interval between 1800 to 3100 BP when uncertainty estimates reach ± 25 years due to widely spaced volcanic tie points. Prior to the Holocene, uncertainties remain within 124 years relative to WD2014. Results show an average Holocene accumulation rate of 7.4 cm/yr (water equivalent). The time variability of accumulation rate is consistent with expectations for steady-state ice flow through the modern spatial pattern of accumulation rate. Time variations in nitrate concentration, nitrate seasonal amplitude, and δ15N of N2 in turn are as expected for the accumulation-rate variations. The highly variable yet well-constrained Holocene accumulation history at the site can help improve scientific understanding of deposition-sensitive climate proxies such as δ15N of N2 and photolyzed chemical compounds.


2014 ◽  
Vol 55 (68) ◽  
pp. 137-146 ◽  
Author(s):  
K.A. Casey ◽  
T.J. Fudge ◽  
T.A. Neumann ◽  
E.J. Steig ◽  
M.G.P. Cavitte ◽  
...  

AbstractSupported by the US National Science Foundation, a new 1500 m, ∼40 ka old ice core will be recovered from South Pole during the 2014/15 and 2015/16 austral summer seasons using the new US intermediate-depth drill. The combination of low temperatures, relatively high accumulation rates and low impurity concentrations at South Pole will yield detailed records of ice chemistry and trace atmospheric gases. The South Pole ice core will provide a climate history record of a unique area of the East Antarctic plateau that is partly influenced by weather systems that cross the West Antarctic ice sheet. The ice at South Pole flows at ∼ 10ma−1 and the South Pole ice-core site is a significant distance from an ice divide. Therefore, ice recovered at depth originated progressively farther upstream of the coring site. New ground-penetrating radar collected over the drill site location shows no anthropogenic influence over the past ∼50 years or upper 15 m. Depth–age scale modeling results show consistent and plausible annual-layer thicknesses and accumulation rate histories, indicating that no significant stratigraphic disturbances exist in the upper 1500 m near the ice-core drill site.


2013 ◽  
Vol 59 (218) ◽  
pp. 1117-1128 ◽  
Author(s):  

AbstractThe IceCube Neutrino Observatory and its prototype, AMANDA, were built in South Pole ice, using powerful hot-water drills to cleanly bore >100 holes to depths up to 2500 m. The construction of these particle physics detectors provided a unique opportunity to examine the deep ice sheet using a variety of novel techniques. We made high-resolution particulate profiles with a laser dust logger in eight of the boreholes during detector commissioning between 2004 and 2010. The South Pole laser logs are among the most clearly resolved measurements of Antarctic dust strata during the last glacial period and can be used to reconstruct paleoclimate records in exceptional detail. Here we use manual and algorithmic matching to synthesize our South Pole measurements with ice-core and logging data from Dome C, East Antarctica. We derive impurity concentration, precision chronology, annual-layer thickness, local spatial variability, and identify several widespread volcanic ash depositions useful for dating. We also examine the interval around ∼74 ka recently isolated with radiometric dating to bracket the Toba (Sumatra) supereruption.


2020 ◽  
Vol 61 (81) ◽  
pp. 84-91 ◽  
Author(s):  
T. M. Jordan ◽  
D. Z. Besson ◽  
I. Kravchenko ◽  
U. Latif ◽  
B. Madison ◽  
...  

AbstractThe Askaryan Radio Array (ARA) experiment at the South Pole is designed to detect high-energy neutrinos which, via in-ice interactions, produce coherent radiation at frequencies up to 1000 MHz. Characterization of ice birefringence, and its effect upon wave polarization, is proposed to enable range estimation to a neutrino interaction and hence aid in neutrino energy reconstruction. Using radio transmitter calibration sources, the ARA collaboration recently measured polarization-dependent time delay variations and reported significant time delays for trajectories perpendicular to ice flow, but not parallel. To explain these observations, and assess the capability for range estimation, we use fabric data from the SPICE ice core to model ice birefringence and construct a bounding radio propagation model that predicts polarization time delays. We compare the model with new data from December 2018 and demonstrate that the measurements are consistent with the prevailing horizontal crystallographic axis aligned near-perpendicular to ice flow. The study supports the notion that range estimation can be performed for near flow-perpendicular trajectories, although tighter constraints on fabric orientation are desirable for improving the accuracy of estimates.


1988 ◽  
Vol 11 ◽  
pp. 208
Author(s):  
J. R. Petit ◽  
J. Jouzel ◽  
J. C. White ◽  
Qian Qiu-yu ◽  
M. Legrand ◽  
...  

The stable-isotope content of precipitation (δD and δ18O) is governed by the successive fractionation processes which occur during the atmospheric water cycle. As a result there is, in polar areas, a well-obeyed and theoretically well-understood linear relationship between the mean istopic content of snow and its mean temperature of formation. This relationship is well documented on a spatial scale but poorly known for a given site on a temporal basis, the main reason being that relatively long-term and sufficiently detailed meteorological data are only available for a few polar sites. The South Pole appears to be a suitable place for such a study because: (i) snow accumulation is high enough (∼20 cm of snow per year), thus reducing the possibility that annual layers will be lost as a result of wind; (ii) seasonal variation in isotope content is still preserved in snow up to 50 years old; (iii) meteorological data are available from the time the station was opened in 1957. Our previous studies of surface and recently deposited snow at the South Pole were very encouraging in this respect; they have been extended with a two-fold purpose: (i) to test the geographical representativity of the isotope record by comparing results from various cores taken within a 10 km radius of the station. The cores are dated by various techniques, such as stratigraphy, seasonal variation in isotopic content, beta-radioactivity fall-out layers, and detection by solid conductivity measurements of the high “spike” which is thought to correspond to the 1815 Tambora eruption; (ii) to discuss the South Pole isotope record over the last 1000 years as recovered from a 127 m deep ice core.


2019 ◽  
Author(s):  
Joseph Souney ◽  
Murat Aydin ◽  
Eric Steig ◽  
T. Fudge ◽  
Mark Twickler
Keyword(s):  
Ice Core ◽  

Sign in / Sign up

Export Citation Format

Share Document