scholarly journals Influence of temporally varying weatherability on CO<sub>2</sub>–climate coupling and ecosystem change in the late Paleozoic

2020 ◽  
Author(s):  
Jon D. Richey ◽  
Isabel P. Montañez ◽  
Yves Goddéris ◽  
Cindy V. Looy ◽  
Neil P. Griffis ◽  
...  

Abstract. Earth's penultimate icehouse, the Late Paleozoic Ice Age (LPIA), was a time of dynamic glaciation and repeated ecosystem perturbation, under conditions of substantial variability in atmospheric pCO2 and O2. Improved constraints on the evolution of atmospheric pCO2 and O2 : CO2 during the LPIA and its subsequent demise to permanent greenhouse conditions is crucial for better understanding the nature of linkages between atmospheric composition, climate, and ecosystem perturbation during this time. We present a new and age-recalibrated pCO2 reconstruction for a 40-Myr interval (~313 to 273 Ma) of the late Paleozoic that (1) confirms a previously hypothesized strong CO2-glaciation linkage, (2) documents synchroneity between major pCO2 and O2 : CO2 changes and compositional turnovers in terrestrial and marine ecosystems, (3) lends support for a modeled progressive decrease in the CO2 threshold for initiation of continental ice sheets during the LPIA, and (4) indicates a likely role of CO2 and O2 : CO2 thresholds in floral ecologic turnovers. Modeling of the relative role of CO2 sinks and sources, active during the LPIA and its demise, on steady-state pCO2 using an intermediate complexity climate-C cycle model (GEOCLIM) and comparison to the new multi-proxy CO2 record provides new insight into the relative influences of the uplift of the Central Pangaean Mountains, intensifying aridification, and increasing mafic rock to-granite rock ratio of outcropping rocks on the global efficiency of CO2 consumption and secular change in steady-state pCO2 through the late Paleozoic.

2020 ◽  
Vol 16 (5) ◽  
pp. 1759-1775 ◽  
Author(s):  
Jon D. Richey ◽  
Isabel P. Montañez ◽  
Yves Goddéris ◽  
Cindy V. Looy ◽  
Neil P. Griffis ◽  
...  

Abstract. Earth's penultimate icehouse period, the late Paleozoic ice age (LPIA), was a time of dynamic glaciation and repeated ecosystem perturbation, which was under conditions of substantial variability in atmospheric pCO2 and O2. Improved constraints on the evolution of atmospheric pCO2 and O2∕CO2 ratios during the LPIA and its subsequent demise to permanent greenhouse conditions are crucial for better understanding the nature of linkages between atmospheric composition, climate, and ecosystem perturbation during this time. We present a new and age-recalibrated pCO2 reconstruction for a 40 Myr interval (∼313 to 273 Ma) of the late Paleozoic that (1) confirms a previously hypothesized strong CO2–glaciation linkage, (2) documents synchroneity between major pCO2 and O2∕CO2 changes and compositional turnovers in terrestrial and marine ecosystems, (3) lends support for a modeled progressive decrease in the CO2 threshold for initiation of continental ice sheets during the LPIA, and (4) indicates a likely role of CO2 and O2∕CO2 thresholds in floral ecologic turnovers. Modeling of the relative role of CO2 sinks and sources active during the LPIA and its demise on steady-state pCO2 using an intermediate-complexity climate–carbon cycle model (GEOCLIM) and comparison to the new multi-proxy CO2 record provides new insight into the relative influences of the uplift of the Central Pangean Mountains, intensifying aridification, and increasing mafic rock to granite rock ratio of outcropping rocks on the global efficiency of CO2 consumption and secular change in steady-state pCO2 through the late Paleozoic.


2018 ◽  
Vol 12 (7) ◽  
pp. 2249-2266 ◽  
Author(s):  
Nadine Steiger ◽  
Kerim H. Nisancioglu ◽  
Henning Åkesson ◽  
Basile de Fleurian ◽  
Faezeh M. Nick

Abstract. Rapid retreat of Greenland's marine-terminating glaciers coincides with regional warming trends, which have broadly been used to explain these rapid changes. However, outlet glaciers within similar climate regimes experience widely contrasting retreat patterns, suggesting that the local fjord geometry could be an important additional factor. To assess the relative role of climate and fjord geometry, we use the retreat history of Jakobshavn Isbræ, West Greenland, since the Little Ice Age (LIA) maximum in 1850 as a baseline for the parameterization of a depth- and width-integrated ice flow model. The impact of fjord geometry is isolated by using a linearly increasing climate forcing since the LIA and testing a range of simplified geometries. We find that the total length of retreat is determined by external factors – such as hydrofracturing, submarine melt and buttressing by sea ice – whereas the retreat pattern is governed by the fjord geometry. Narrow and shallow areas provide pinning points and cause delayed but rapid retreat without additional climate warming, after decades of grounding line stability. We suggest that these geometric pinning points may be used to locate potential sites for moraine formation and to predict the long-term response of the glacier. As a consequence, to assess the impact of climate on the retreat history of a glacier, each system has to be analyzed with knowledge of its historic retreat and the local fjord geometry.


2016 ◽  
Author(s):  
Matthew G. Powell ◽  
◽  
Ian-Michael Taylor-Benjamin

2017 ◽  
Author(s):  
Kate M. Gigstad ◽  
◽  
Margaret L. Fraiser ◽  
John L. Isbell ◽  
Lydia T. Albright ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document