atmospheric pco2
Recently Published Documents


TOTAL DOCUMENTS

107
(FIVE YEARS 25)

H-INDEX

28
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Daan Boot ◽  
Anna S. Von Der Heydt ◽  
Henk A. Dijkstra

Abstract. Proxy records show large variability of atmospheric pCO2 on different time scales. Most often such variations are attributed to a forced response of the carbon cycle to changes in external conditions. Here, we address the problem of internally generated variations in pCO2 due to pure carbon-cycle dynamics. We focus on the effect of the strength of Atlantic Meridional Overturning Circulation (AMOC) on such internal variability. Using the Simple Carbon Project Model v1.0 (SCP-M), which we have extended to represent a suite of nonlinear carbon-cycle feedbacks, we efficiently explore the multi-dimensional parameter space to address the AMOC – pCO2 relationship. We find that climatic boundary conditions, and the representation of biological production in the model are most important for this relationship. When climate sensitivity in our model is increased, we find intrinsic oscillations due to Hopf bifurcations with multi-millennial periods. The mechanism behind these oscillations is clarified and related to the coupling of atmospheric pCO2 and the alkalinity cycle, via the river influx and the sediment outflux. This mechanism is thought to be relevant for explaining atmospheric pCO2 variability during glacial cycles.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yuyang Wu ◽  
Daoliang Chu ◽  
Jinnan Tong ◽  
Haijun Song ◽  
Jacopo Dal Corso ◽  
...  

AbstractThe Permian–Triassic mass extinction was marked by a massive release of carbon into the ocean-atmosphere system, evidenced by a sharp negative carbon isotope excursion. Large carbon emissions would have increased atmospheric pCO2 and caused global warming. However, the magnitude of pCO2 changes during the PTME has not yet been estimated. Here, we present a continuous pCO2 record across the PTME reconstructed from high-resolution δ13C of C3 plants from southwestern China. We show that pCO2 increased from 426 +133/−96 ppmv in the latest Permian to 2507 +4764/−1193 ppmv at the PTME within about 75 kyr, and that the reconstructed pCO2 significantly correlates with sea surface temperatures. Mass balance modelling suggests that volcanic CO2 is probably not the only trigger of the carbon cycle perturbation, and that large quantities of 13C-depleted carbon emission from organic matter and methane were likely required during complex interactions with the Siberian Traps volcanism.


2021 ◽  
Author(s):  
Daan Boot ◽  
Henk Dijkstra

<p>The Atlantic Meridional Overturning Circulation (AMOC) plays an important role in regulating the climate of the Northern Hemisphere. Several studies have shown that the AMOC can be in two stable states under equal forcing. This bistability, and associated tipping behavior, has been suggested as a mechanism for climate transitions in the past such as the Dansgaard-Oescher events. The relationship between AMOC variability and that in atmospheric pCO2 concentration is still unclear since different studies provide  contradictory results. Here, we investigate this  relationship using the Simple Carbon Project Model v1.0 (SCP-M), which we extended to represent a suite of nonlinear  carbon cycle feedbacks. By implementing SCP-M in the continuation and bifurcation software AUTO-07p, we can efficiently explore the multi-dimensional parameter space to address the AMOC - pCO2 relationship while varying the strengths of the carbon cycle feedbacks. We do not find multiple equilibria in the carbon-cycle dynamics, with fixed AMOC, but there are  intrinsic oscillations due to Hopf bifurcations with multi-millennial periods. The mechanisms of  this variability,  related to biological production and to calcium carbonate compensation, will be presented and their relevance  is addressed. </p>


2021 ◽  
Vol 14 (1) ◽  
pp. 125-149
Author(s):  
Katherine A. Crichton ◽  
Jamie D. Wilson ◽  
Andy Ridgwell ◽  
Paul N. Pearson

Abstract. Temperature is a master parameter in the marine carbon cycle, exerting a critical control on the rate of biological transformation of a variety of solid and dissolved reactants and substrates. Although in the construction of numerical models of marine carbon cycling, temperature has been long recognised as a key parameter in the production and export of organic matter at the ocean surface, its role in the ocean interior is much less frequently accounted for. There, bacteria (primarily) transform sinking particulate organic matter (POM) into its dissolved constituents and consume dissolved oxygen (and/or other electron acceptors such as sulfate). The nutrients and carbon thereby released then become available for transport back to the surface, influencing biological productivity and atmospheric pCO2, respectively. Given the substantial changes in ocean temperature occurring in the past, as well as in light of current anthropogenic warming, appropriately accounting for the role of temperature in marine carbon cycling may be critical to correctly projecting changes in ocean deoxygenation and the strength of feedbacks on atmospheric pCO2. Here we extend and calibrate a temperature-dependent representation of marine carbon cycling in the cGENIE.muffin Earth system model, intended for both past and future climate applications. In this, we combine a temperature-dependent remineralisation scheme for sinking organic matter with a biological export production scheme that also includes a dependence on ambient seawater temperature. Via a parameter ensemble, we jointly calibrate the two parameterisations by statistically contrasting model-projected fields of nutrients, oxygen, and the stable carbon isotopic signature (δ13C) of dissolved inorganic carbon in the ocean with modern observations. We additionally explore the role of temperature in the creation and recycling of dissolved organic matter (DOM) and hence its impact on global carbon cycle dynamics. We find that for the present day, the temperature-dependent version shows a fit to the data that is as good as or better than the existing tuned non-temperature-dependent version of the cGENIE.muffin. The main impact of accounting for temperature-dependent remineralisation of POM is in driving higher rates of remineralisation in warmer waters, in turn driving a more rapid return of nutrients to the surface and thereby stimulating organic matter production. As a result, more POM is exported below 80 m but on average reaches shallower depths in middle- and low-latitude warmer waters compared to the standard model. Conversely, at higher latitudes, colder water temperature reduces the rate of nutrient resupply to the surface and POM reaches greater depth on average as a result of slower subsurface rates of remineralisation. Further adding temperature-dependent DOM processes changes this overall picture only a little, with a slight weakening of export production at higher latitudes. As an illustrative application of the new model configuration and calibration, we take the example of historical warming and briefly assess the implications for global carbon cycling of accounting for a more complete set of temperature-dependent processes in the ocean. We find that between the pre-industrial era (ca. 1700) and the present (year 2010), in response to a simulated air temperature increase of 0.9 ∘C and an associated projected mean ocean warming of 0.12 ∘C (0.6 ∘C in surface waters and 0.02 ∘C in deep waters), a reduction in particulate organic carbon (POC) export at 80 m of just 0.3 % occurs (or 0.7 % including a temperature-dependent DOM response). However, due to this increased recycling nearer the surface, the efficiency of the transfer of carbon away from the surface (at 80 m) to the deep ocean (at 1040 m) is reduced by 5 %. In contrast, with no assumed temperature-dependent processes impacting production or remineralisation of either POM or DOM, global POC export at 80 m falls by 2.9 % between the pre-industrial era and the present day as a consequence of ocean stratification and reduced nutrient resupply to the surface. Our analysis suggests that increased temperature-dependent nutrient recycling in the upper ocean has offset much of the stratification-induced restriction in its physical transport.


2020 ◽  
Vol 8 (10) ◽  
pp. 737 ◽  
Author(s):  
Stergios D. Zarkogiannis ◽  
Assimina Antonarakou ◽  
Vincent Fernandez ◽  
P. Graham Mortyn ◽  
George Kontakiotis ◽  
...  

Planktonic foraminiferal biomineralization intensity, reflected by the weight of their shell calcite mass, affects global carbonate deposition and is known to follow climatic cycles by being increased during glacial stages and decreased during interglacial stages. Here, we measure the dissolution state and the mass of the shells of the planktonic foraminifera species Globigerina bulloides from a Tropical Eastern North Atlantic site over the last two glacial–interglacial climatic transitions, and we report no major changes in plankton calcite production with the atmospheric pCO2 variations. We attribute this consistency in foraminifera calcification to the climatic and hydrological stability of the tropical regions. However, we recorded increased shell masses midway through the penultimate deglaciation (Termination II). In order to elucidate the cause of the increased shell weights, we performed δ18O, Mg/Ca, and μCT measurements on the same shells from a number of samples surrounding this event. Compared with the lighter ones, we find that the foraminifera of increased weight are internally contaminated by sediment infilling and that their shell masses respond to local surface seawater density changes.


2020 ◽  
Vol 16 (5) ◽  
pp. 1759-1775 ◽  
Author(s):  
Jon D. Richey ◽  
Isabel P. Montañez ◽  
Yves Goddéris ◽  
Cindy V. Looy ◽  
Neil P. Griffis ◽  
...  

Abstract. Earth's penultimate icehouse period, the late Paleozoic ice age (LPIA), was a time of dynamic glaciation and repeated ecosystem perturbation, which was under conditions of substantial variability in atmospheric pCO2 and O2. Improved constraints on the evolution of atmospheric pCO2 and O2∕CO2 ratios during the LPIA and its subsequent demise to permanent greenhouse conditions are crucial for better understanding the nature of linkages between atmospheric composition, climate, and ecosystem perturbation during this time. We present a new and age-recalibrated pCO2 reconstruction for a 40 Myr interval (∼313 to 273 Ma) of the late Paleozoic that (1) confirms a previously hypothesized strong CO2–glaciation linkage, (2) documents synchroneity between major pCO2 and O2∕CO2 changes and compositional turnovers in terrestrial and marine ecosystems, (3) lends support for a modeled progressive decrease in the CO2 threshold for initiation of continental ice sheets during the LPIA, and (4) indicates a likely role of CO2 and O2∕CO2 thresholds in floral ecologic turnovers. Modeling of the relative role of CO2 sinks and sources active during the LPIA and its demise on steady-state pCO2 using an intermediate-complexity climate–carbon cycle model (GEOCLIM) and comparison to the new multi-proxy CO2 record provides new insight into the relative influences of the uplift of the Central Pangean Mountains, intensifying aridification, and increasing mafic rock to granite rock ratio of outcropping rocks on the global efficiency of CO2 consumption and secular change in steady-state pCO2 through the late Paleozoic.


Sign in / Sign up

Export Citation Format

Share Document