scholarly journals Was there a glacial outburst flood in the Torngat Mountains during Marine Isotope Stage 3?

2021 ◽  
Author(s):  
Tamara Pico ◽  
Jane Willenbring ◽  
April S. Dalton ◽  
Sidney Hemming

Abstract. We report previously unpublished evidence for a Marine Isotope Stage 3 (MIS 3; 60–26 ka) glacial outburst flood in the Torngat Mountains (northern Quebec/Labrador, Canada). We present 10Be cosmogenic exposure ages from legacy fieldwork for a glacial lake shoreline with evidence for outburst flooding in the Torngat Mountains, with a minimum age of 36 ± 3 ka (we consider the most likely age, corrected for burial, to be ~56 ± 3 ka). This shoreline position and age can potentially constrain the Laurentide Ice Sheet margin in the Torngat Mountains. This region, considered a site of glacial inception, has no published dated geologic constraints for high-elevation MIS 3 ice margins. We estimate the freshwater flux associated with the inferred glacial outburst flood using high-resolution digital elevation maps corrected for glacial isostatic adjustment. Using assumptions about the ice-dammed locations we find that a freshwater flood volume of 1.14 × 1012 m3 could have entered the Hudson Strait. This glacial outburst flood volume could have contributed to surface ocean freshening to cause a measurable meltwater signal in δ18O records, but would not necessarily have been associated with substantial ice rafted debris. Future work is required to refine estimates of the size and timing of such a glacial outburst flood. Nevertheless, we outline testable hypotheses about the Laurentide Ice Sheet and glacial outburst floods, including possible implications for Heinrich events and glacial inception in North America, that can be assessed with additional fieldwork and cosmogenic measurements.

Geology ◽  
2019 ◽  
Vol 47 (2) ◽  
pp. 111-114 ◽  
Author(s):  
April S. Dalton ◽  
Sarah A. Finkelstein ◽  
Steven L. Forman ◽  
Peter J. Barnett ◽  
Tamara Pico ◽  
...  

Author(s):  
Germán Mariano Gasparini ◽  
Esteban Soibelzon ◽  
Cecilia Deschamps ◽  
Analía Francia ◽  
Elisa Beilinson ◽  
...  

2019 ◽  
Vol 13 (7) ◽  
pp. 1911-1923 ◽  
Author(s):  
Ilaria Tabone ◽  
Alexander Robinson ◽  
Jorge Alvarez-Solas ◽  
Marisa Montoya

Abstract. The Northeast Greenland Ice Stream (NEGIS) has been suffering a significant ice mass loss during the last decades. This is partly due to increasing oceanic temperatures in the subpolar North Atlantic, which enhance submarine basal melting and mass discharge. This demonstrates the high sensitivity of this region to oceanic changes. In addition, a recent study suggested that the NEGIS grounding line was 20–40 km behind its present-day location for 15 ka during Marine Isotope Stage (MIS) 3. This is in contrast with Greenland temperature records indicating cold atmospheric conditions at that time, expected to favour ice-sheet expansion. To explain this anomalous retreat a combination of atmospheric and external forcings has been invoked. Yet, as the ocean is found to be a primary driver of the ongoing retreat of the NEGIS glaciers, the effect of past oceanic changes in their paleo evolution cannot be ruled out and should be explored in detail. Here we investigate the sensitivity of the NEGIS to the oceanic forcing during the last glacial period using a three-dimensional hybrid ice-sheet–shelf model. We find that a sufficiently high oceanic forcing could account for a NEGIS ice-margin retreat of several tens of kilometres, potentially explaining the recently proposed NEGIS grounding-line retreat during Marine Isotope Stage 3.


Sign in / Sign up

Export Citation Format

Share Document