scholarly journals Climate of the last glacial maximum: sensitivity studies and model-data comparison with the LOVECLIM coupled model

2006 ◽  
Vol 2 (6) ◽  
pp. 1105-1153 ◽  
Author(s):  
D. M. Roche ◽  
T. M. Dokken ◽  
H. Goosse ◽  
H. Renssen ◽  
S. L. Weber

Abstract. The Last Glacial Maximum climate is one of the classic benchmarks used both to test the ability of coupled models to simulate climates different from that ot the present-day and to better understand the possible range of mechanisms that could be involved in future climate change. It also bears the advantage of being one of the most well documented periods with respect to palaeoclimatic records, allowing a thorough data-model comparison. We present here an ensemble of Last Glacial Maximum climate simulations obtained with the Earth System model LOVECLIM, including coupled dynamic atmosphere, ocean and vegetation components. The climate obtained using standard parameter values is then compared to available proxy data for the surface ocean, vegetation, oceanic circulation and atmospheric conditions. Interestingly, the oceanic circulation obtained resembles that of the present-day, but with increased overturning rates. As this result is in contradiction with the "classic" palaeoceanographic view, we ran a range of sensitivity experiments to explore the response of the model and the possibilities for other oceanic circulation states. After a critical review of our LGM state with respect to available proxy data, we conclude that the balance between water masses obtained is consistent with the available data although the specific characteristics (temperature, salinity) are not in full agreement. The consistency of the simulated state is further reinforced by the fact that the mean surface climate obtained is shown to be generally in agreement with the most recent reconstructions of vegetation and sea surface temperatures, even at regional scales.

2007 ◽  
Vol 3 (2) ◽  
pp. 205-224 ◽  
Author(s):  
D. M. Roche ◽  
T. M. Dokken ◽  
H. Goosse ◽  
H. Renssen ◽  
S. L. Weber

Abstract. The Last Glacial Maximum climate is one of the classical benchmarks used both to test the ability of coupled models to simulate climates different from that of the present-day and to better understand the possible range of mechanisms that could be involved in future climate change. It also bears the advantage of being one of the most well documented periods with respect to palaeoclimatic records, allowing a thorough data-model comparison. We present here an ensemble of Last Glacial Maximum climate simulations obtained with the Earth System model LOVECLIM, including coupled dynamic atmosphere, ocean and vegetation components. The climate obtained using standard parameter values is then compared to available proxy data for the surface ocean, vegetation, oceanic circulation and atmospheric conditions. Interestingly, the oceanic circulation obtained resembles that of the present-day, but with increased overturning rates. As this result is in contradiction with the current palaeoceanographic view, we ran a range of sensitivity experiments to explore the response of the model and the possibilities for other oceanic circulation states. After a critical review of our LGM state with respect to available proxy data, we conclude that the oceanic circulation obtained is not inconsistent with ocean circulation proxy data, although the water characteristics (temperature, salinity) are not in full agreement with water mass proxy data. The consistency of the simulated state is further reinforced by the fact that the mean surface climate obtained is shown to be generally in agreement with the most recent reconstructions of vegetation and sea surface temperatures, even at regional scales.


2007 ◽  
Vol 30 (7-8) ◽  
pp. 855-869 ◽  
Author(s):  
Ramdane Alkama ◽  
M. Kageyama ◽  
G. Ramstein ◽  
O. Marti ◽  
P. Ribstein ◽  
...  

2013 ◽  
Vol 9 (1) ◽  
pp. 367-376 ◽  
Author(s):  
J. D. Annan ◽  
J. C. Hargreaves

Abstract. Some recent compilations of proxy data both on land and ocean (MARGO Project Members, 2009; Bartlein et al., 2011; Shakun et al., 2012), have provided a new opportunity for an improved assessment of the overall climatic state of the Last Glacial Maximum. In this paper, we combine these proxy data with the ensemble of structurally diverse state of the art climate models which participated in the PMIP2 project (Braconnot et al., 2007) to generate a spatially complete reconstruction of surface air (and sea surface) temperatures. We test a variety of approaches, and show that multiple linear regression performs well for this application. Our reconstruction is significantly different to and more accurate than previous approaches and we obtain an estimated global mean cooling of 4.0 ± 0.8 °C (95% CI).


2003 ◽  
Vol 20 (2) ◽  
pp. 127-151 ◽  
Author(s):  
S.-I. Shin ◽  
Z. Liu ◽  
B. Otto-Bliesner ◽  
E. Brady ◽  
J. Kutzbach ◽  
...  

1995 ◽  
Vol 100 (D4) ◽  
pp. 7203-7221 ◽  
Author(s):  
P. Friedlingstein ◽  
K. C. Prentice ◽  
I. Y. Fung ◽  
J. G. John ◽  
G. P. Brasseur

2004 ◽  
Vol 359 (1443) ◽  
pp. 499-514 ◽  
Author(s):  
Francis E. Mayle ◽  
David J. Beerling ◽  
William D. Gosling ◽  
Mark B. Bush

The aims of this paper are to review previously published palaeovegetation and independent palaeoclimatic datasets together with new results we present from dynamic vegetation model simulations and modern pollen rain studies to: (i) determine the responses of Amazonian ecosystems to changes in temperature, precipitation and atmospheric CO 2 concentrations that occurred since the Last Glacial Maximum (LGM), ca . 21 000 years ago; and (ii) use this long–term perspective to predict the likely vegetation responses to future climate change. Amazonia remained predominantly forested at the LGM, although the combination of reduced temperatures, precipitation and atmospheric CO 2 concentrations resulted in forests structurally and floristically quite different from those of today. Cold–adapted Andean taxa mixed with rainforest taxa in central areas, while dry forest species and lianas probably became important in the more seasonal southern Amazon forests and savannahs expanded at forest–savannah ecotones. Net primary productivity (NPP) and canopy density were significantly lower than today. Evergreen rainforest distribution and NPP increased during the glacial—Holocene transition owing to ameliorating climatic and CO 2 conditions. However, reduced precipitation in the Early–Mid–Holocene ( ca . 8000–3600 years ago) caused widespread, frequent fires in seasonal southern Amazonia, causing increased abundance of drought–tolerant dry forest taxa and savannahs in ecotonal areas. Rainforests expanded once more in the Late Holocene owing to increased precipitation caused by greater austral summer insolation, although some of this forest expansion (e.g. in parts of the Bolivian Beni) is clearly caused by palaeo Indian landscape modification. The plant communities that existed during the Early–Mid–Holocene may provide insights into the kinds of vegetation response expected from similar increases in temperature and aridity predicted for the twenty–first century. We infer that ecotonal areas near the margins of the Amazon Basin are liable to be most sensitive to future environmental change and should therefore be targeted with conservation strategies that allow ‘natural’ species movements and plant community re–assortments to occur.


Sign in / Sign up

Export Citation Format

Share Document