Hochaufgelöste Simulation von meteorologischen Feldern in urbanen Räumen mit dem Weather Research and Forecasting (WRF) Modell

2021 ◽  
Author(s):  
Lukas N. Pilz ◽  
Sanam N. Vardag ◽  
Joachim Fallmann ◽  
André Butz

<p><span>Städte und Kommunen sind für mehr als 70% </span><span>der globalen, fossilen CO2-Emissionen</span><span> verantwortlich, sodass hier ein enormes Mitigationspotential besteht. Informationen über (inner-)städtische CO2-Emissionen stehen allerdings oft nicht </span><span>in hoher zeitlicher und räumlicher Auflösung</span><span> zur Verfügung und sind </span><span>meist</span><span> mit großen Unsicherheiten behaftet. Diese Umstände erschweren eine zielgerichtete und effiziente Mitigation im urbanen Raum. </span><span>Städtische Messnetzwerke können als unabhängige Informationsquelle einen Beitrag leisten, um CO2-Emissionen in Städten zu quantifizieren und Mitigation zu verifizieren</span><span>. </span><span>Verschiedene denkbare Beobachtungsstrategien sollten</span><span> im Vorfeld abgewägt werden, um urbane Emissionen bestmöglich, d.h. mit der erforderlichen Genauigkeit und </span><span>Kosteneffizienz</span><span> zu quantifizieren. So können Messnetzwerke die Basis für zielgerichtete und kosteneffiziente Mitigation legen.</span></p><p><span>Im Rahmen des Verbundvorhabens „Integrated Greenhouse Gas Monitoring System for Germany“ (ITMS) werden wir verschiedene Beobachtungsstrategien für urbane Räume entwerfen und mit Hilfe von Modellsimulation evaluieren und abwägen. Notwendige Voraussetzung für </span><span>die Evaluation der Strategien</span><span> ist eine akkurate Repräsentation des atmosphärischen Transports im Modell.</span></p><p><span>Diese Studie zeigt</span><span> erste Ergebnisse der hochauflösenden (1kmx1km) meteorologischen Simulationen für den Rhein-Neckar-Raum mit dem WRF Modell. </span><span>Die in WRF simulierten meteorologischen Größen werden für verschiedene Modellkonfigurationen mit </span><span>re-analysierten Daten des European Centre for Medium-Range Weather Forecasts (ECMWF) und ausgewählten Messstationen verglichen. Damit evaluieren wir </span><span>den Einfluss unterschiedlicher Nudging-Strategien, Parametrisierungen physikalischer Prozesse und urbaner Interaktionen</span><span> auf </span><span>die Modellperformance</span> <span>von</span><span> Lufttemperatur, Windrichtung, Windgeschwindigkeit und Grenzschichthöhe. Durch diese Analysen gewährleisten wir, dass die Simulation der Beobachtungsstrategien auf robuste</span><span>m</span><span> und realistische</span><span>m</span><span> atmosphärischen Transport basieren und schlussendlich repräsentative Empfehlungen für den Aufbau von Messnetzwerken liefern können. </span></p>

Gefahrstoffe ◽  
2020 ◽  
Vol 80 (07-08) ◽  
pp. 318-324
Author(s):  
D. Öttl

Aufgrund der komplexen Orografie in den Alpen sind einfache, auf diagnostischen Ansätzen beruhende Windfeldmodelle in Österreich kaum anwendbar. Daher wird in den meisten österreichischen Bundesländern das mesoskalige Modell GRAMM im Rahmen von Luftschadstoffuntersuchungen eingesetzt. In diesem Beitrag werden Ergebnisse der Modellevaluierung anhand jener drei Datensätze der Richtlinie VDI 3783 Blatt 7 präsentiert, die auf teils umfangreichen Messkampagnen basieren. Das Modell GRAMM wurde mittlerweile erweitert (Version GRAMM-SCI) und kann nun auch mit den Reanalysedaten ERA5 des Europäischen Wetterdienstes (European Centre for Medium-Range Weather Forecasts, ECMWF) angetrieben werden. Um die Qualität der ERA5-Daten zu prüfen, wurden zusätzliche Simulationen für die drei Evaluierungsdatensätze aus VDI 3783 Blatt 7 durchgeführt. Es zeigt sich, dass Modellsimulationen mit GRAMM-SCI, die auf ERA5-Daten basieren, die Strömungs- und Temperaturverhältnisse grundsätzlich gut wiedergeben. Allerdings sind die Abweichungen zu den Messungen der Sondermesskampagnen teilweise etwas zu groß, um die hohen Anforderungen von VDI 3783 Blatt 7 an die Modellergebnisse vollständig zu erfüllen.


Author(s):  
Michelle Simões Reboita ◽  
Diogo Malagutti Gonçalves Marietto ◽  
Amanda Souza ◽  
Marina Barbosa

O objetivo deste estudo é apresentar uma descrição das características da atmosfera que contribuíram para elevados totais de precipitação no sul de Minas Gerais e que foram precursores de dois episódios de inundação e alagamento na cidade de Itajubá: um em 16 de janeiro de 1991 e outro em 02 de janeiro de 2000. Para tanto, foram utilizados dados do Climate Prediction Center e da reanálise ERA-Interim do European Centre for Medium-Range Weather Forecasts (ECMWF). Entre os resultados, têm-se que os episódios de inundação e alagamento ocorridos na cidade de Itajubá, em ambos os anos, estiveram associados à atuação da Zona de Convergência do Atlântico Sul, que se estendia da Amazônia, passando pelo sudeste do Brasil, e chegava ao Atlântico Sul.


2017 ◽  
Vol 17 (18) ◽  
pp. 11521-11539 ◽  
Author(s):  
Stefan Lossow ◽  
Hella Garny ◽  
Patrick Jöckel

Abstract. The amplitude of the annual variation in water vapour exhibits a distinct isolated maximum in the middle and upper stratosphere in the southern tropics and subtropics, peaking typically around 15° S in latitude and close to 3 hPa (∼  40.5 km) in altitude. This enhanced annual variation is primarily related to the Brewer–Dobson circulation and hence also visible in other trace gases. So far this feature has not gained much attention in the literature and the present work aims to add more prominence. Using Envisat/MIPAS (Environmental Satellite/Michelson Interferometer for Passive Atmospheric Sounding) observations and ECHAM/MESSy (European Centre for Medium-Range Weather Forecasts Hamburg/Modular Earth Submodel System) Atmospheric Chemistry (EMAC) simulations we provide a dedicated illustration and a full account of the reasons for this enhanced annual variation.


Atmosphere ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 858
Author(s):  
Di Zeng ◽  
Jinkui Wu ◽  
Yaqiong Mu ◽  
Mingshan Deng ◽  
Yanqiang Wei ◽  
...  

This paper investigated the spatial and temporal variations of the Universal Thermal Climate Index (UTCI) of the China-Pakistan Economic Corridor (CPEC) from 1979 to 2018. The European Centre for Medium-Range Weather Forecasts Re-Analysis-Interim (ERA-Interim) reanalysis data from the European Centre for Medium-Range Weather Forecasts (ECMWF) is selected for UTCI calculation in the region and analyzed by a linear trend and correlation analysis. The results showed that (1) the UTCI of CPEC is decreased with the increase of latitude and altitude. There is obvious spatial heterogeneity in the seasonal scale and the spatial distribution of different thermal stress categories. (2) UTCI generally exhibited a positive trend of 0.33 °C/10a over the past 40 years, and the seasonal variation characteristics of UTCI show an upward trend in all four seasons, of which spring is the fastest. On the space scale, the growth trend has significant spatial variations. (3) Temperature has a positive correlation with UTCI. The influence of temperature on UTCI is greater than that of wind speed. The results of this study will be helpful for regional planning and also contribute to comprehending the characteristics of the thermal environment in CPEC.


2017 ◽  
Vol 6 (1) ◽  
pp. 17
Author(s):  
Alfi Satriadi

Gelombang menjalar dari perairan dalam menuju perairan dangkal. Penjalaran gelombang merupakan bentuk dari adanya gangguan pada suatu medium, dalam hal ini medium air. Salah satu bentuk dari gangguan tersebut adalah gaya gesek angin. Sehingga arah dan kecepatan angin dapat digunakan untuk menentukan tinggi dan periode gelombang yang dihasilkan. Metode Sverdrup, Munk, dan Bretschneider (SMB) digunakan dalam penelitian ini untuk menentukan tinggi dan periode gelombang signifikan di perairan dangkal khususnya perairan Semarang. Data angin yang digunakan untuk meramalkan tinggi dan periode gelombang diperoleh dari European Centre for Medium-Range Weather Forecasts (ECMWF) selama 10 tahun (2007-2016). Koreksi durasi dilakukan untuk mendapatan data angin rata-rata setiap jam. Selanjutnya melakukan koreksi stabilitas dan menentukan nilai wind stress factor dimana nilai ini, fetch efektif, dan kedalaman perairan digunakan untuk mendapatkan nilai tinggi dan periode gelombang signifikan. Hasil penelitian menunjukan arah angin dominan pada musim Timur, musim Peralihan II, dan musim Barat menuju ke arah Tenggara. Sedangkan arah angin dominan pada musim Peralihan I menuju ke arah Selatan. Musim Barat memiliki variasi kecepatan angin lebih tinggi dari ketiga musim lainnya. Demikian pula, tinggi dan periode gelombang signifikan pada musim Barat adalah tertinggi dengan nilai 1,227 meter dan 5,175 detik. Sebaliknya, pada musim Peralihan II memiliki tinggi dan periode gelombang signifikan terendah dengan nilai 0,577 meter dan 3,391 detik. Tinggi dan periode gelombang signifikan di perairan Semarang sangat dipengaruhi oleh angin muson.


Sign in / Sign up

Export Citation Format

Share Document