Dynamic and quasi-dynamic modelling of earthquake sequences from zero to three dimensions: choose model complexity as needed

Author(s):  
Meng Li ◽  
Casper Pranger ◽  
Luca Dal Zilio ◽  
Ylona van Dinther

<p>Earthquake sequences reflect the repetitive dynamic processes of stress accumulation and release on a fault. Understanding earthquake sequences is fundamental for the research of induced and natural earthquakes and may ultimately help to better assess long-term seismic hazard. Numerical models are well-suited to overcome limited spatiotemporal observations and improve our understanding on this topic. However, large models in 3D are still computational time and memory consuming. Moreover, this may not be optimal if the aspects of lateral or depth variations within the results are not needed to answer a particular objective. This motivated us to investigate the advantages and limitations of various dimensional models by simulating earthquake sequences in 0D, 1D, 2D and ultimately 3D. We applied a C++ numerical library GARNET [1] to deal with the various dimensional models in one simulator. This library uses a fully staggered finite difference scheme with a rectilinear adaptive grid. It also incorporates an automatic discretization algorithm and combines different physical ingredients such as visco-elasto-plastic rheology and quasi- and fully dynamic approaches into one algorithm.</p><p>Here we present numerical experiments of a strike-slip fault under rate-and-state friction, surrounded by an elastic medium with constant tectonic loading and, test them under different parameters and initial conditions. By adding one dimension at a time, we simulate a more detailed structure of the seismic cycle. The higher dimensional models present both the validity and the limitations of the lower dimensional ones. For example, inertial waves are not possible to present in 0D while a quasi-dynamic radiation damping term can be added here instead. Another example is that due to lack of grid extension along the fault, both 0D and 1D model fail to reveal an earthquake nucleation phase. However, some important observables, such as the seismic cycle period, maximum/minimum stress and slip rates, are calculated accurately in lower dimensional models, which are much faster than higher dimensional models. We also implemented and compared quasi- and fully dynamic models in the same way. Our results indicate that both the size of simulated seismic events and their interval are reduced in quasi-dynamic models. This could provide us with guidance to identify the appropriate model complexity for various problems. We will also present 3D modeling results, which will be compared to their 2D equivalent. Finally, we present our results for the SCEC SEAS benchmarks [2] and compare them to other participating codes.</p><p>[1] Pranger, C. C., L. Le Pourhiet, D. May, Y. van Dinther, and T. Gerya (2016). “Self- consistent seismic cycle simulation in a three-dimensional continuum model: method- ology and examples.” AGU Fall Meeting Abstracts.</p><p>[2] Erickson, B. A., et al. (2019). The Community Code Verification Exercise for Simulating Sequences of Earthquakes and Aseismic Slip (SEAS). Poster Presentation at 2019 SCEC Annual Meeting.</p>

2021 ◽  
Author(s):  
Meng Li ◽  
Casper Pranger ◽  
Ylona van Dinther

<p>Numerical models are well-suited to overcome limited spatial-temporal observations to understand earthquake sequences, which is fundamental to ultimately better assess seismic hazard. However, high-resolution numerical models in 3D are computationally time and memory consuming. This is not optimal if the aspects of lateral or depth variations within the results are not needed to answer a particular objective. In this study we quantify and summarize the limitations and advantages for simulating earthquake sequences in all spatial dimensions.</p><p> </p><p>We simulate earthquake sequences on a strike-slip fault with rate-and-state friction from 0D to 3D using both quasi-dynamic and fully dynamic approaches. This cross-dimensional comparison is facilitated by our newly developed, flexible code library <em>Garnet</em>, which adopts a finite difference method with a fully staggered grid. We have validated our models using problems BP1-QD & FD and BP4-QD & FD of the SEAS (Sequences of Earthquakes and Aseismic Slip) benchmarks from the Southern California Earthquake Center.</p><p> </p><p>Our results demonstrate that lower-dimensional/quasi-dynamic models are qualitatively similar in terms of earthquake cycle characteristics to their higher-dimensional/fully-dynamic counterparts, while they could be hundreds to millions times faster at the same time. Quantitatively, we observe that certain earthquake parameters, such as stress drop and fracture energy release, can be accurately reproduced in each of these simpler models as well. However, higher dimensional models generally produce lower maximum slip velocities and hence longer coseismic durations. This is mainly due to lower rupture speeds, which result from increased energy consumption along added rupture front directions. In the long term, higher dimensional models produce shorter recurrence interval and hence smaller total slip, which is mainly caused by the higher interseismic stress loading rate inside the nucleation zone. The same trend is also observed when comparing quasi-dynamic models to fully dynamic ones. We extend a theoretical calculation that to first order approximates the aforementioned physical observables in 3D to all other dimensions. These theoretical considerations confirm the same trend as what is observed for stress drop, recurrence interval and total slip across dimensions. These findings on similarities and differences of different dimensional models and a corresponding quantification of computational efficiency can guide model design and facilitate result interpretation in future studies.</p>


2021 ◽  
Author(s):  
Mikhail Sviridov ◽  
◽  
Anton Mosin ◽  
Sergey Lebedev ◽  
Ron Thompson ◽  
...  

While proactive geosteering, special inversion algorithms are used to process the readings of logging-while-drilling resistivity tools in real-time and provide oil field operators with formation models to make informed steering decisions. Currently, there is no industry standard for inversion deliverables and corresponding quality indicators because major tool vendors develop their own device-specific algorithms and use them internally. This paper presents the first implementation of vendor-neutral inversion approach applicable for any induction resistivity tool and enabling operators to standardize the efficiency of various geosteering services. The necessity of such universal inversion approach was inspired by the activity of LWD Deep Azimuthal Resistivity Services Standardization Workgroup initiated by SPWLA Resistivity Special Interest Group in 2016. Proposed inversion algorithm utilizes a 1D layer-cake formation model and is performed interval-by-interval. The following model parameters can be determined: horizontal and vertical resistivities of each layer, positions of layer boundaries, and formation dip. The inversion can support arbitrary deep azimuthal induction resistivity tool with coaxial, tilted, or orthogonal transmitting and receiving antennas. The inversion is purely data-driven; it works in automatic mode and provides fully unbiased results obtained from tool readings only. The algorithm is based on statistical reversible-jump Markov chain Monte Carlo method that does not require any predefined assumptions about the formation structure and enables searching of models explaining the data even if the number of layers in the model is unknown. To globalize search, the algorithm runs several Markov chains capable of exchanging their states between one another to move from the vicinity of local minimum to more perspective domain of model parameter space. While execution, the inversion keeps all models it is dealing with to estimate the resolution accuracy of formation parameters and generate several quality indicators. Eventually, these indicators are delivered together with recovered resistivity models to help operators with the evaluation of inversion results reliability. To ensure high performance of the inversion, a fast and accurate semi-analytical forward solver is employed to compute required responses of a tool with specific geometry and their derivatives with respect to any parameter of multi-layered model. Moreover, the reliance on the simultaneous evolution of multiple Markov chains makes the algorithm suitable for parallel execution that significantly decreases the computational time. Application of the proposed inversion is shown on a series of synthetic examples and field case studies such as navigating the well along the reservoir roof or near the oil-water-contact in oil sands. Inversion results for all scenarios confirm that the proposed algorithm can successfully evaluate formation model complexity, recover model parameters, and quantify their uncertainty within a reasonable computational time. Presented vendor-neutral stochastic approach to data processing leads to the standardization of the inversion output including the resistivity model and its quality indicators that helps operators to better understand capabilities of tools from different vendors and eventually make more confident geosteering decisions.


Author(s):  
Gullik A. Jensen ◽  
Thor I. Fossen

This paper considers mathematical models for model-based controller design in offshore pipelay operations. Three classes of models for control design are discussed, real-world models suitable for controller design verification, controller and observer models which are used on-line in the control system implementation. The control application place requirements on the model with respect to the computational time, dynamic behavior, stability and accuracy. Models such as the beam model, two catenary models, as well as general finite element (FE) models obtained from computer programs were not able to meet all of the requirements, and two recent dynamic models designed for control are presented, which bridge the gap between the simple analytical and more complex FE models. For completeness, modeling of the pipelay vessel, stinger and roller interaction, soil and seabed interaction and environmental loads are discussed.


1996 ◽  
Vol 11 (24) ◽  
pp. 4453-4463 ◽  
Author(s):  
J. SCOTT CARTER ◽  
MASAHICO SAITO

A version of the tetrahedral equation is formulated using a pictorial interpretation of the Frenkel-Moore equation. The picture gives a solution that is a product of quantum Yang-Baxter solutions. Higher-dimensional variants of the Frenkel-Moore equations are found from this pictorial interpretation, and the pictures reduce their solvability to the solvability of lower-dimensional equations.


Author(s):  
Sudhir Kaul

This paper discusses the application of Support Vector Regression (SVR) for modeling the non-linear and hysteretic behavior exhibited by mechanical snubbing systems. Though the discussion in this paper is limited to the application of SVR to snubbing in elastomeric isolators, the approach is generic and can be applied to other dynamic systems or to systems exhibiting hysteretic behavior. A theoretical model that represents the coupled dynamics of an isolation system with the corresponding snubbing system for a single degree-of-freedom system is proposed. The theoretical model is experimentally validated and is subsequently used to build a metamodel using SVR. The results of the metamodel are compared to the theoretical model for a simulation example and are found to be comparable, thereby reducing the computational time for the design and analysis of the snubbing system by orders of magnitude. The SVR based metamodel can, therefore, be used to substitute the computationally intense theoretical model for performing design iterations and design optimization of the snubbing system, significantly reducing model complexity as well as computational time during the design cycle.


2005 ◽  
Vol 74 (5-6) ◽  
pp. 359-374
Author(s):  
L.Yu. Kossovitch ◽  
R.R. Moukhomodiarov ◽  
G.A. Rogerson

Sign in / Sign up

Export Citation Format

Share Document