RAHU Project: Assessing water security and climate change adaptation strategies in the glaciated Vilcanota-Urubamba river basin

Author(s):  
Pedro Rau ◽  
Wouter Buytaert ◽  
Fabian Drenkhan ◽  
Waldo Lavado ◽  
Juan Jimenez ◽  
...  

<p>The Peruvian Andes are a hotspot of vulnerabilities to impacts in water resources due to the propensity for water stress, the highly unpredictable weather, the sensitivity of glaciers, and the socio-economic vulnerability of its population. In this context, we selected the Vilcanota-Urubamba catchment in Southern Peru for addressing these challenges aiming at our objectives within a particular hydrological high-mountain context in the tropical Andes: a) Develop a fully-distributed, physically-based glacier surface energy balance model that allows for a realistic representation of glacier dynamics in glacier melt projections; b) Design and implement a glacio-hydrological monitoring and data collection approach to quantify non-glacial contributions to water resources and the impact of catchments interventions; c) Mapping of human water use at high spatiotemporal resolution and determining current and future levels of water (in)security; and d) Integrate last objectives in a glacier - water security assessment model and evaluate the tool's capacity to support locally embedded climate change adaptation strategies. </p><p>The RAHU project intends to transform the scientific understanding of the impact of glacier shrinkage on water security and, at the same time, to connect to and inform policy practices in Peru. It follows a "source to tap" paradigm, in which is planned to deliver a comprehensive and fully integrated water resources vulnerability assessment framework for glacier-fed basins, comprising state-of-the-art glaciology, hydrology, water demand characterisation, and water security assessment. It includes glacio-hydrological and water resources monitoring campaigns, to complement existing monitoring efforts of our project partners and collaborators, and new remotely sensed data sets. Those campaigns will be implemented using the principles and tools of participatory monitoring and knowledge co-creation that our team has pioneered in the tropical Andes. The datasets produced by this approach, combined with existing monitoring implemented by our team and collaborators, will allow us to build an integrated water supply-demand-vulnerability assessment model for glacierized basins, and to use this to evaluate adaptation strategies at the local scale. </p><p>This research is part of the multidisciplinary collaboration between British and Peruvian scientists (Newton Fund, Newton-Paulet).</p>

2021 ◽  
Vol 13 (14) ◽  
pp. 7905
Author(s):  
Moh. Shadiqur Rahman ◽  
Hery Toiba ◽  
Wen-Chi Huang

The impacts of climate change on marine capture fisheries have been observed in several studies. It is likely to have a substantial effect on fishers’ income and food security. This study aims to estimate the impact of adaptation strategies on fishers’ income and their household’s food security. Data were collected from small-scale fishers’ households, which own a fishing boat smaller or equal to five gross tonnages (GT). The study sites were the two coastal regions of Malang and Probolinggo in East Java, Indonesia, due to the meager socioeconomic resources caused by climate change. A probit regression model was used to determine the factors influencing the fishers’ adaptation. Propensity score matching (PSM) was applied to evaluate the impact of the adaptation strategies on income and food security. Food security was measured by food consumption score (FCS). The findings indicated that participation in the fishers’ group affected adaptation strategies significantly, and so did the access to credit and climate information. Also, PSM showed that the adaptation strategies had a positive and significant impact on fishers’ income and food security. Those who applied the adaptation strategies had a higher income and FCS than those who did not. This finding implies that the fishery sector’s adaptation strategies can have significant expansion outcome and reduce exposure to risks posed by climate change. Therefore, the arrangement of more climate change adaptation strategies should be promoted by the government for small-scale fishers in Indonesia.


Subject The impact of climate change on Maghreb countries. Significance The Maghreb is one of the world's most water-scarce regions. Global warming will exacerbate the ecological, social and economic challenges it already faces. Impacts Water misuse will exacerbate the effects of climate change on the region’s water supplies. Renewable energies will not only help ease climate change impacts, but also diversify regional economies and create employment. Unless climate change adaptation strategies accelerate, Maghreb countries will see a deterioration in living conditions.


2020 ◽  
Vol 12 (11) ◽  
pp. 4637 ◽  
Author(s):  
Kuo-Ching Huang ◽  
Chen-Jai Lee ◽  
Shih-Liang Chan ◽  
Cheng-Hsin Tai

Maintaining a certain amount of agricultural land and promoting its agricultural land utilization efficiency is essential in a country. Many innovative strategies for adapting to climate change have been implemented in developed countries. To achieve the goal of climate change adaptation for agricultural land, a vulnerability assessment of farmland is indispensable. Based on the research framework of the Intergovernmental Panel on Climate Change, this study applied the structure of exposure, sensitivity, and adaptation to build criteria and conduct an evaluation of a designated area in Southern Taiwan. We identified the key factors of the vulnerability of farmland, through mapping with spatial analysis, and by using geographic information system tools. The main purpose of the application of a vulnerability assessment is not to explicitly describe the status of agricultural land to climate change, but to help local government and farmers to identify the critical area, and to discuss the appropriated adaptive policies. According to the results of the vulnerability assessment of agricultural land, the entire study region can be divided into three patterns: Pattern 1, located in the western coastal zone, filled with various attributes of high vulnerability; Pattern 2, distributed on the central plain region in the east, with complete blocks of agricultural land and low vulnerability; and Pattern 3, located in the central plain region to the west, a region in which areas with various vulnerability levels. The following three types of adaptation strategies for climate change for farmland were established: (1) the enhancement of agricultural production, (2) the maintenance of agricultural production, and (3) the conservation of the agricultural environment. The current results can serve as valuable guidelines for governments to implement feasible local adaptation strategies in the future.


2016 ◽  
Vol 7 (3) ◽  
pp. 551-577 ◽  
Author(s):  
Azin Shahni Danesh ◽  
Mohammad Sadegh Ahadi ◽  
Hedayat Fahmi ◽  
Majid Habibi Nokhandan ◽  
Hadi Eshraghi

As a result of inappropriate management and rising levels of societal demand, in arid and semi-arid regions water resources are becoming increasingly stressed. Therefore, well-established insight into the effects of climate change on water resource components can be considered to be an essential strategy to reduce these effects. In this paper, Iran's climate change and variability, and the impact of climate change on water resources, were studied. Climate change was assessed by means of two Long Ashton Research Station-Weather Generator (LARS-WG) weather generators and all outputs from the available general circulation models in the Model for the Assessment of Greenhouse-gas Induced Climate Change-SCENario GENerator (MAGICC-SCENGEN) software, in combination with different emission scenarios at the regional scale, while the Providing Regional Climates for Impacts Studies (PRECIS) model has been used for projections at the local scale. A hydrological model, the Runoff Assessment Model (RAM), was first utilized to simulate water resources for Iran. Then, using the MAGICC-SCENGEN model and the downscaled results as input for the RAM model, a prediction was made for changes in 30 basins and runoffs. Modeling results indicate temperature and precipitation changes in the range of ±6 °C and ±60%, respectively. Temperature rise increases evaporation and decreases runoff, but has been found to cause an increased rate of runoff in winter and a decrease in spring.


2018 ◽  
Vol 15 ◽  
pp. 23-34
Author(s):  
Bishista Shree

This paper presents climate change adaptation strategies applying by the rural people living around Chedaguard Municipality ward no. 6 of Jajarkot district. Both qualitative and quantitative approaches were used in the survey and further data were obtained through focus group discussions, case study and participant observations techniques. In doing so, the fous was given to agriculture based livelihoods including forest, water resources, health sector, energy and natural land reform practices. Likewise, changing pattern of rainfall, temperature, humidity were analyzed. Existence of new diseases on agriculture, water resource dryness, forest degradation, forest fire, etc. has been explored resulting with degradation of agricultural production and productivity To adapt from the climate change of this impact, local people have been using Jeevatu, Sisnu, Titepati, Banmara, Khirro, etc. as a bio-pesticides. Similarly, people have used improved cooking stoves to protect forest and they have done plantation to overcome the water resources scarcity.


Sign in / Sign up

Export Citation Format

Share Document