Recent scientific findings based on high-resolution core plasma imaging of the ionosphere with Swarm and ePOP

Author(s):  
David Knudsen

<p>The Thermal Ion Imagers on Swarm A-C, and the Suprathermal Electron/Ion Imager on ePOP (now “Swarm-E”) provide a unique view of charged particle distribution functions in the ionosphere at high time resolution (up to 100 images/s). Through high resolution, CCD-based imaging (~3000 pixels/image), ion drift velocity is derived from these images at a resolution of 20 m/s or better, and in general agreement with velocities derived from ground based radars [1] and an empirical convection model [2]. This talk reviews recent scientific applications of this technique, which are wide-ranging and include mechanisms of ion heating and upflow [3,4], M-I coupling via Alfven waves [5,6], electron acceleration and heating by Alfven waves [7,8, 9], intense plasma flows associated with “Steve” [10,11], and electrodynamics of large-scale FAC systems[ 12], among others. In addition, future opportunities made possible by these data will be discussed.</p><p>[1] Koustov et al. (2019), JGR, https://doi.org/10.1029/2018JA026245</p><p>[2] Lomidze et al. (2019), ESS, https://doi.org/10.1029/2018EA000546</p><p>[3] Shen and Knudsen (2020a), On O+ ion heating by BBELF waves at low altitude, JGR, in revision.</p><p>[4] van Irsel et al. (2020), Highly correlated ion upflow and electron temperature variations in the high latitude topside ionosphere, submitted to JGR.</p><p>[5] Pakhotin et al. (2020), JGR, https://doi.org/10.1029/2019JA027277</p><p>[6] Wu et al. (2020a), Swarm survey of Alfvenic fluctuations and their relation to nightside field-aligned current and auroral arcs systems, JGR, in revision.</p><p>[7] Liang et al. (2019), JGR, https://doi.org/10.1029/2019JA026679</p><p>[8] Wu et al. (2020b), e-POP observations of suprathermal electron bursts in the ionospheric Alfven resonator, GRL, submitted.  </p><p>[9] Shen and Knudsen (2020b), Suprathermal electron acceleration perpendicular to the magnetic field in the topside ionosphere, JGR, in press.</p><p>[10] Archer et al. (2019), JGR, https://doi.org/10.1029/2019GL082687</p><p>[11] Nishimura et al. (2019), JGR, https://doi.org/10.1029/2019GL082460</p><p>[12] Olifer et al (2020), Swarm observations of dawn/dusk asymmetries between Pedersen conductance in upward and downward FAC regions, submitted to JGR.</p><p> </p>

1983 ◽  
Vol 29 (2) ◽  
pp. 243-253 ◽  
Author(s):  
Tomikazu Namikawa ◽  
Hiromitsu Hamabata

The ponderomotive force generated by random Alfvén waves in a collisionless plasma is evaluated taking into account mean magnetic and velocity shear and is expressed as a series involving spatial derivatives of mean magnetic and velocity fields whose coefficients are associated with the helicity spectrum function of random velocity field. The effect of microscale random Alfvén waves through ponderomotive and mean electromotive forces generated by them on the propagation of large-scale Alfvén waves is also investigated.


2012 ◽  
Vol 19 (7) ◽  
pp. 072118 ◽  
Author(s):  
Kehua Li ◽  
Xueyu Gong ◽  
Xingqiang Lu ◽  
Wei Guo ◽  
Xinxia Li

1995 ◽  
Vol T60 ◽  
pp. 10-19 ◽  
Author(s):  
A S de Assis ◽  
C Leubner ◽  
C A de Azevedo

1983 ◽  
Vol 25 (9) ◽  
pp. 1021-1035 ◽  
Author(s):  
A De Chambrier ◽  
A Heym ◽  
F Hofmann ◽  
B Joye ◽  
R Keller ◽  
...  

2018 ◽  
Vol 36 (6) ◽  
pp. 1607-1630 ◽  
Author(s):  
Eckart Marsch

Abstract. This paper reviews recent aspects of solar wind physics and elucidates the role Alfvén waves play in solar wind acceleration and turbulence, which prevail in the low corona and inner heliosphere. Our understanding of the solar wind has made considerable progress based on remote sensing, in situ measurements, kinetic simulation and fluid modeling. Further insights are expected from such missions as the Parker Solar Probe and Solar Orbiter. The sources of the solar wind have been identified in the chromospheric network, transition region and corona of the Sun. Alfvén waves excited by reconnection in the network contribute to the driving of turbulence and plasma flows in funnels and coronal holes. The dynamic solar magnetic field causes solar wind variations over the solar cycle. Fast and slow solar wind streams, as well as transient coronal mass ejections, are generated by the Sun's magnetic activity. Magnetohydrodynamic turbulence originates at the Sun and evolves into interplanetary space. The major Alfvén waves and minor magnetosonic waves, with an admixture of pressure-balanced structures at various scales, constitute heliophysical turbulence. Its spectra evolve radially and develop anisotropies. Numerical simulations of turbulence spectra have reproduced key observational features. Collisionless dissipation of fluctuations remains a subject of intense research. Detailed measurements of particle velocity distributions have revealed non-Maxwellian electrons, strongly anisotropic protons and heavy ion beams. Besides macroscopic forces in the heliosphere, local wave–particle interactions shape the distribution functions. They can be described by the Boltzmann–Vlasov equation including collisions and waves. Kinetic simulations permit us to better understand the combined evolution of particles and waves in the heliosphere.


2020 ◽  
Vol 27 (1) ◽  
pp. 012901
Author(s):  
Jiansheng Yao ◽  
Quanming Lu ◽  
Xinliang Gao ◽  
Jian Zheng ◽  
Huayue Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document